首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A specific chondroitin sulfate-lyase, chondro-2-sulfatase, was first used for identification of the unsaturated disaccharide constituents (delta Di-S) generated from variously sulfated chondroitin sulfate and dermatan sulfate isomers by a high-performance liquid chromatographic (HPLC) method. delta Di-S generated from oversulfated chondroitin sulfate and dermatan sulfate isomers following digestion with chondroitinases were further digested by the chondro-2-sulfatase, which led to the release of one sulfate from a specific 2-position of the uronic acid residue, as judged with the new HPLC system using a resin made from a sulfonized styrene-divinylbenzene copolymer. It was also found that the chondro-2-sulfatase digests not only delta Di-S with the structure of D-uronic acid 2 sulfate 1-3-N-acetyl-D-galactosamine but also other sulfated delta Di-S with partially the same constituents, i.e., unsaturated di-sulfated disaccharide B, unsaturated di-sulfated disaccharide D or G, and unsaturated tri-sulfated disaccharide.  相似文献   

2.
Glycosaminoglycans (GAGs) are a family of acidic heteropolysaccharides, including such molecules as chondroitin sulfate, dermatan sulfate, heparin and keratan sulfate. Cleavage of the O-glycosidic bond within GAGs can be accomplished by hydrolases as well as lyases, yielding disaccharide and oligosaccharide products. We have determined the crystal structure of chondroitinase B, a glycosaminoglycan lyase from Flavobacterium heparinum, as well as its complex with a dermatan sulfate disaccharide product, both at 1.7 A resolution. Chondroitinase B adopts the right-handed parallel beta-helix fold, found originally in pectate lyase and subsequently in several polysaccharide lyases and hydrolases. Sequence homology between chondroitinase B and a mannuronate lyase from Pseudomonas sp. suggests this protein also adopts the beta-helix fold. Binding of the disaccharide product occurs within a positively charged cleft formed by loops extending from the surface of the beta-helix. Amino acid residues responsible for recognition of the disaccharide, as well as potential catalytic residues, have been identified. Two arginine residues, Arg318 and Arg364, are found to interact with the sulfate group attached to O-4 of N-acetylgalactosamine. Cleavage of dermatan sulfate likely occurs at the reducing end of the disaccharide, with Glu333 possibly acting as the general base.  相似文献   

3.
Dermatan sulfate is a glycosaminoglycan that selectively inhibits the action of thrombin through interaction with heparin cofactor II. Unlike heparin it does not interact with other coagulation factors and is able to inhibit thrombin associated with clots. This property has made dermatan sulfate an attractive candidate as an antithrombotic drug. Previous studies have showed that dermatan sulfate derived from porcine/bovine intestinal mucosa/skin or marine invertebrates is capable of stimulating heparin cofactor II-mediated thrombin inhibition in vitro. This biological activity is reported for the first time in this study using dermatan sulfate derived from mammalian tissues other than intestinal mucosa or skin. Ten different bovine tissues including the aorta, diaphragm, eyes, large and small intestine, esophagus, skin, tendon, tongue, and tongue skin were used to prepare dermatan sulfate-enriched fractions by anion exchange chromatography and acetone precipitation. Heparin cofactor II/dermatan sulfate-mediated thrombin inhibition measured in vitro revealed activity comparable to or higher than the commercial standard with 2-fold differences observed between some tissues. Analysis of the extracted dermatan sulfate using fluorophore-assisted carbohydrate electrophoresis revealed significant differences in the relative percentage of all the mono-sulfated disaccharides, in particular the predominant mammalian disaccharide uronic acid-->N-acetyl-D-galactosamine-4-O-sulfate, confirming previous reports regarding variations in sulfation in dermatan sulfate from different tissues. Overall, these findings demonstrate that dermatan sulfate extracted from a range of bovine tissues exhibits in vitro antithrombin activity equivalent to or higher than that observed for porcine intestinal mucosa, identifying additional sources of dermatan sulfate as potential antithrombotic agents.  相似文献   

4.
1) Chondroitin sulfate and dermatan sulfate of bovine arterial tissue exist as copolymers with a varying degree of hybridization between chondroitin and dermatan sulfates. A fraction rich in dermatan sulfate hybridized with 20% chondroitin sulfate (termed DS-rich hybrid) and a fraction rich in chondroitin sulfate containing 17% DS as copolymer constituent (CS-rich hybrid) can be isolated by the subfractionation of the arterial tissue CS-DS preparation. 2) When arterial tissue segments were preincubated with [14C]glucosamine, 95% of the radioactivity incorporated into the glycosaminoglycans was found to be present in the galactosamine moiety of all of the CS-DS subfractions, whereas the relative proportion of 14C radioactivity incorporated into the galactosamine and uronic acid components was 51:49 following preincubation with [14C]glucose. In both experiments the specific radioactivity of the DS-rich hybrids was twice as high as that of the CS-rich hybrids. 3) Enzymatic degradation of the hybrid CS-DS subfractions by chondroitin AC and ABC lyases revealed that the specific radioactivity of the CS and DS disaccharide units released from the DS-rich hybrids was twice as high as those isolated from the CS-rich hybrids, but within each hybrid fraction the galactosamine moieties of the CS and DS units and their glucuronic and iduronic acid components exhibited equal specific radioactivities. 4) The results strongly support the assumption that distinct compartments exist for the formation of hybrid CS-DS proteoglycans with different proportions of CS and DS.  相似文献   

5.
Silbert JE  Sugumaran G 《IUBMB life》2002,54(4):177-186
Chondroitin sulfate and dermatan sulfate are synthesized as galactosaminoglycan polymers containing N-acetylgalactosmine alternating with glucuronic acid. The sugar residues are sulfated to varying degrees and positions depending upon the tissue sources and varying conditions of formation. Epimerization of any of the glucuronic acid residues to iduronic acid at the polymer level constitutes the formation of dermatan sulfate. Chondroitin/dermatan glycosaminoglycans are covalently attached by a common tetrasaccharide sequence to the serine residues of core proteins while they are adherent to the inner surface of endoplasmic reticulum/Golgi vesicles. Addition of the first sugar residue, xylose, to core proteins begins in the endoplasmic reticulum, followed by the addition of two galactose residues by two distinct glycosyl transferases in the early cis/medial regions of the Golgi. The linkage tetrasaccharide is completed in the medial/trans Golgi by the addition of the first glucuronic acid residue, followed by transfer of N-acetylgalactosamine to initiate the formation of a galactosaminoglycan rather than a glucosaminoglycan. This specific N-acetylgalactosaminyl transferase is different from the chondroitin synthase involved in generation of the repeating disaccharide units to form the chondroitin polymer. Sulfation of the chondroitin polymer by specific sulfotransferases occurs as the polymer is being formed. All the enzymes in the pathway for synthesis have been cloned, with the exception of the glucuronyl to iduronyl epimerase involved in the formation of dermatan residues.  相似文献   

6.
Decorin is an extracellular matrix dermatan sulfate/chondroitin sulfate proteoglycan found in a variety of vertebrate species. In the extracellular matrix of mammals, decorin interacts with fibrillar collagen and regulates its morphology. We report here the occurrence and distribution of collagen type I and the peptide, CEASGIGPEVPDDRD, which is present in the human decorin proteoglycan, in the extracellular matrix of different tissues of the primitive invertebrate chordate Styela plicata. The content of collagen was estimated by hydroxyproline, and its distribution in the tissues by histochemistry. Collagen was detected biochemically in intestine, heart, pharynx and mantle, occurring in higher amounts in the heart, followed by pharynx, mantle and intestine. Histochemical analysis with Sirius red indicates that collagen is present in the extracellular matrix of intestine and pharynx. Further ultrastructural immuno-gold assays using polyclonal antibodies raised against the decorin-specific peptide CEASGIGPEVPDDRD and collagen type I showed a co-localization of these molecules. These data suggest the occurrence of a protein containing a decorin-like peptide sequence, which may be interacting with fibrillar collagen in this primitive chordate.  相似文献   

7.
We prepared dermatan sulfate specimens from various porcine tissues, and compared their heparin cofactor II-mediated thrombin-inhibitory activities and chemical natures, including disaccharide composition. Electrophoresis of the specimens on cellulose acetate membrane indicated that spleen dermatan sulfate was the most acidic of the dermatan sulfates prepared from the various porcine tissues. Analysis of the disaccharide units of the dermatan sulfate specimens by high-performance liquid chromatography revealed that spleen dermatan sulfate was rich in 4,6-di-O-sulfated N-acetylgalactosamine residues as compared with those of the other tissues. Spleen dermatan sulfate exhibited the highest thrombin-inhibitory activity, which may be related to its high content of the disulfated N-acetylgalactosamine residue.  相似文献   

8.
Unfertilized eggs of the sea urchin Strongylocentrotus purpuratus are surrounded by a gelatinous layer rich in sulfated fucan. Shortly after fertilization this polysaccharide disappears, but 24 h later the embryos synthesize high amounts of dermatan sulfate concomitantly with the mesenchyme blastula-early gastrula stage when the larval gut is forming. This glycosaminoglycan has the same backbone structure [4-alpha-L-IdoA-1-->3-beta-D-GalNAc-1](n) as the mammalian counterpart but possesses a different sulfation pattern. It has a high content of 4-O- and 6-O-disulfated galactosamine units. In addition, chains of this dermatan sulfate are considerable longer than those of vertebrate tissues. Adult sea urchin tissues contain high concentrations of sulfated polysaccharides, but dermatan sulfate is restricted to the adult body wall where it accounts for approximately 20% of the total sulfated polysaccharides. In addition, sulfation at the 4-O-position decreases markedly in the dermatan sulfate from adult sea urchin when compared with the glycan from larvae. Overall, these results demonstrate the occurrence of dermatan sulfates with unique sulfation patterns in this marine invertebrate. The physiological implication of these oversulfated dermatan sulfates is unclear. One hypothesis is that interactions between components of the extracellular matrix in marine invertebrates occur at higher salt concentrations than in vertebrates and therefore require glycosaminoglycans with increased charge density.  相似文献   

9.
[3H,35S]Dermatan/chondroitin sulfate glycosaminoglycans produced during culture of fibroblasts in medium containing varying concentrations of sulfate were tested for their susceptibility to chondroitin ABC lyase and chondroitin AC lyase. Chondroitin ABC lyase completely degraded [3H]hexosamine-labeled and [35S] sulfate-labeled dermatan/chondroitin sulfate to disaccharides. Chondroitin AC lyase treatment of the labeled glycosaminoglycans produced different results. With this enzyme, dermatan/chondroitin sulfate formed at high concentrations of sulfate yielded small glycosaminoglycans and larger oligosaccharides but almost no disaccharide. This indicated that the dermatan/chondroitin sulfate co-polymer contained mostly iduronic acid with only an occasional glucuronic acid. As the medium sulfate concentration was progressively lowered, there was a concomitant increase in the susceptibility to degradation by chondroitin AC lyase. Thus, the labeled glycosaminoglycans formed at the lowest concentration of sulfate yielded small oligosaccharides including substantial amounts of disaccharide. The smaller chondroitin AC lyase-resistant [3H,35S]dermatan/chondroitin sulfate oligosaccharides were analyzed by gel filtration. Results indicated that, in general, the iduronic acid-containing disaccharide residues present in the undersulfated [3H,35S]glycosaminoglycan were sulfated, whereas the glucuronic acid-containing disaccharide residues were non-sulfated. This work confirms earlier reports that there is a relationship between epimerization and sulfation. Moreover, it demonstrates that medium sulfate concentration is critical in determining the proportions of dermatan to chondroitin (iduronic/glucuronic acid) produced by cultured cells.  相似文献   

10.
Cells having a fibroblast-like morphology were cultured from explants of adult rat lung tissue. (35S)Sulfate was incorporated into sulfated proteoglycans in the medium at a linear rate for up to 96 h, while the rate of incorporation into the cell layer increased gradually until reaching a plateau at 40 h. The culture medium contained proteoglycans which migrated as a single peak with Kav = 0.10 on Bio-Gel A-15. Their glycosaminoglycan components (Kav = 0.70 on Bio-Gel A-15) contained predominantly chondroitin sulfate (33 to 44% of the total galactosaminoglycans) or dermatan sulfate chains. Based on the results of chondroitinase AC-II and periodate degradation, disaccharide repeating units of the dermatan sulfate were composed of 36% iduronic acid, 50% 2-sulfoiduronate, and 14% glucuronic acid. A similar composition was found for the dermatan sulfate in the cell fraction. Almost one-half of the sulfate label in the cell fraction was in a heparan sulfate proteoglycan which migrated on Bio-Gel A-15 with Kav = 0.30. The heparan sulfate chains (Kav = 0.81 on Bio-Gel A-15) had few, if any, sulfated N-acetylglucosamine residues and did not contain 2-sulfoiduronic acid in neighboring disaccharide repeat sequences. These results indicate that fibroblast-like lung cells synthesize several types of multichain sulfated proteoglycans which have properties in common with those found in lung tissues.  相似文献   

11.
Several sulfated polysaccharides have been isolated from the test cells of the ascidian Styela plicata. The preponderant polysaccharide is a highly sulfated heparan sulfate with the following disaccharide composition: (1) UA(2SO4)-1-->4 GlcN(SO4)(6SO4), 53%; (2) UA(2SO4)-1-->4-GlcN(SO4), 22%; (3) UA-1-->4-GlcNAc(6SO4), 14% and (4) UA-1-->4-GlcN(SO4), 11%. Two others unidentified sulfated polysaccharides and a glycogen polymer are also present in the ascidian eggs. Histochemistry with the cationic dye 1,9-dimethyl-methylene blue and biochemical analysis of the 35S-sulfate incorporation into the eggs reveal that the sulfated glycans are present exclusively in the test cells. Possibly these sulfated polysaccharides are involved in important functions of these cells, such as to confer an external and hydrophilic layer which protect the eggs and the larvae of ascidians.  相似文献   

12.
Sulfated glycosaminoglycans were isolated from 23 species of 13 phyla of invertebrates and characterized by their electrophoretic migration in three different buffer systems coupled with enzymatic degradation using bacterial heparinase, heparitinases and chondroitinase AC. Heparan sulfate is a ubiquitous compound present in all species analyzed whereas chondroitin sulfate was present in 20 species and heparin-like compounds in 12 species of the invertebrates. The heparin-like compounds were purified from the echinoderm Mellita quinquisperforata (sand dollar) and the crustacean Ucides cordatus (crab) with anticoagulant activities of 60 and 52 IU/mg, respectively. Degradation of these heparins with heparinase produced significant amounts of the trisulfated disaccharide typical of mammalian heparins. This was confirmed by 13C-NMR spectroscopy of the crab heparin. An updated phylogenetic tree of the distribution of sulfated glycosaminoglycans in the animal kingdom is also presented.  相似文献   

13.
The absolute and relative amounts of glycosaminoglycans and [35S]sulfate uptake were investigated in several tissues of male guinea pigs and rats under different sexual hormonal conditions (castration, estrogen treatment, or both). The hormonal effects, regarding the pattern of sulfated glycosaminoglycans, were specifically observed in the target organs (vas deferens and seminal vesicles) of both animals. Castration, in both species, decreases the amount of heparan sulfate and chondroitin sulfate, while diethylstilbestrol (DES) treatment causes different effects on rat and guinea pig target organs. In rats the effect of estrogen administration and surgical castration was essentially the same, and in guinea pigs DES increased the content of dermatan sulfate and chondroitin sulfate. The modifications in the specific patterns of the sulfated glycosaminoglycans suggest that these compounds are under sexual hormonal control only in the target organs, and show a specific pattern of distribution according to the tissue layer.  相似文献   

14.
Glycosaminoglycans with unique sulfation patterns have been identified in different species of ascidians (sea squirts), a group of marine invertebrates of the Phylum Chordata, sub-phylum Tunicata (or Urochordata). Oversulfated dermatan sulfate composed of [4-α-L-IdoA-(2-O-SO3)?1 → 3-β-D-GalNAc(4-OSO3)?1]n repeating disaccharide units is found in the extracellular matrix of several organs, where it seems to interact with collagen fibers. This dermatan sulfate co-localizes with a decorin-like protein, as indicated by immunohistochemical analysis. Low sulfated heparin/heparan sulfate-like glycans composed mainly of [4-α-L-IdoA-(2-OSO3)?1 → 4-α-D-GlcN(SO3)?1 (6-O-SO3)?1]n and [4-α-L-IdoA-(2-O-SO3)?1 → 4-α-D-GlcN(SO3)?1]n have also been described in ascidians. These heparin-like glycans occur in intracellular granules of oocyte assessory cells, named test cells, in circulating basophil-like cells in the hemolymph, and at the basement membrane of different ascidian organs. In this review, we present an overview of the structure, distribution, extracellular and intracellular localization of the sulfated glycosaminoglycans in different species and tissues of ascidians. Considering the phylogenetic position of the subphylum Tunicata in the phylum Chordata, a careful analysis of these data can reveal important information about how these glycans evolved from invertebrate to vertebrate animals.  相似文献   

15.
Heparin was divided into four fractions on fibronectin-Sepharose. The higher affinity fraction for fibronectin was larger in molecular size, higher in sulfate content and higher in affinity for anti-thrombin III. Together with these heparin fractions, the following three series of heparin samples were examined to compare the affinity for fibronectin-Sepharose: four fractions separated on Sephadex G-100; five fractions separated on antithrombin III-Sepharose, and six partially and completely N-desulfated heparins. The result showed that the affinity of heparin for fibronectin was dependent exclusively on its molecular size, and that an appropriate level of sulfate content in heparin (1.9-2.4 mol/disaccharide) was essential for the affinity. The sulfated preparations of glycosaminoglycans (heparan sulfate, dermatan sulfate and chondroitin 4-sulfate) and neutral polysaccharides (amylose and dextran) having higher sulfate content than heparin were found to display higher affinity for fibronectin than heparin. This suggested that highly sulfated polysaccharides showed potent affinity irrespective of their polysaccharide structure. The sulfated chondroitin 4-sulfate having a sulfate content and molecular size comparable to those of heparin was inferior to heparin with respect to affinity. A competitive dissociation experiment indicated that heparin and other polysulfated polysaccharides share a common binding site on the fibronectin molecule.  相似文献   

16.
17.
Two forms of dermatan sulfate proteoglycans, called DS-PGI and DS-PGII, have been isolated from both bovine fetal skin and calf articular cartilage and characterized. The proteoglycans were isolated using either (a) molecular sieve chromatography under conditions where DS-PGI selectively self-associates or (b) chromatography on octyl-Sepharose, which separates DS-PGI from DS-PGII based on differences in the hydrophobic properties of their core proteins. The NH2-terminal amino acid sequence of DS-PGI from skin and cartilage is identical. The NH2-terminal amino acid sequence of DS-PGII from skin and cartilage is identical. However, the amino acid sequence data and tryptic peptide maps demonstrate that the core proteins of DS-PGI and DS-PGII differ in primary structure. In DS-PGI from bovine fetal skin, 81-84% of the glycosaminoglycan was composed of IdoA-GalNAc(SO4) disaccharide repeating units. In DS-PGI from calf articular cartilage, only 25-29% of the glycosaminoglycan was composed of IdoA-GalNAc(SO4). In DS-PGII from bovine fetal skin, 85-93% of the glycosaminoglycan was IdoA-GalNAc(SO4), whereas in DS-PGII from calf articular cartilage, only 40-44% of the glycosaminoglycan was IdoA-GalNAc(SO4). Thus, analogous proteoglycans from two different tissues, such as DS-PGI from skin and cartilage, possess a core protein with the same primary structure, yet contain glycosaminoglycan chains which differ greatly in iduronic acid content. These differences in the composition of the glycosaminoglycan chains must be determined by tissue-specific mechanisms which regulate the degree of epimerization of GlcA-GalNAc(SO4) into IdoA-GalNAc(SO4) and not by the primary structure of the core protein.  相似文献   

18.
Sulfation and desulfation of total glycosaminoglycans (GAG) as well as of chondroitin sulfates (A + C), dermatan sulfate, and heparan sulfate were quantified in the developing cerebrum and cerebellum of mice by labeling with [35S]sulfate combined with chases started 24 hr after [35S]sulfate injection. In both the developing cerebrum and cerebellum, the rate of biosynthesis of total sulfated GAG was highest shortly after birth (2 days), decreased sharply thereafter, and reached a plateau after 14 days. The biosynthetic activities of chondroitin sulfates and heparan sulfate decreased sharply up to 14 days and retained constant levels afterward. By contrast, the rates of biosynthesis of dermatan sulfate increased up to 14 days. The biodegradation rates of total sulfated GAG as well as of chondroitin sulfates, heparan sulfate, and dermatan sulfate were strongly correlated with the corresponding rates of biosynthesis during the first 2 postnatal weeks. Total and individual sulfated GAG showed high degradation rates resulting in half-life times of a few hours up to 1 1/2 days. Thus sulfated GAG are synthesized in excess and the actual net content seems to be co-regulated to a high degree by lysosomal degradation. In both brain parts, a proportional increase of the sulfated GAG content vs the total GAG content from 40% at birth to 90% at 28 days was observed. Since during development heparan sulfate and dermatan sulfate manifested a relative increase in their daily net synthesis besides a decrease of chondroitin sulfates, a developmental increase of the sulfate groups linked to GAG is evidenced. This molecular differentiation resulting in microenvironmental changes may be of high functional significance.  相似文献   

19.
The separation of sulfated glycosaminoglycans in mixtures by agarose-gel electrophoresis and the recovery of single polysaccharide bands has been applied to the characterization of polysaccharides extracted from tissues without previous purification of single species. Sulfated glycosaminoglycans, heparin with its two components, slow-moving and fast-moving, heparan sulfate, dermatan sulfate, and chondroitin sulfate, were separated to microgram level by conventional agarose-gel electrophoresis. After their separation, they were fixed in the agarose-gel matrix by precipitation in a cetyltrimethylammonium bromide solution, making them visible on a dark background. After recovery of gel containing the fixed bands, high temperatures (90 degrees C for 15 min) were necessary to dissolve the gel matrix, and a solution of NaCl (3 M) was used to release sulfated polysaccharides from the complex with cetyltrimethylammonium. After precipitation of glycosaminoglycans in the presence of ethanol, the recovery of slow-moving heparin, fast-moving heparin, heparan sulfate, dermatan sulfate, and chondroitin sulfate was from 1 to 10 microg, with a percentage greater than 45% and a purity above 90%. Sulfated glycosaminoglycans in mixtures recovered from gel matrix as single species were evaluated for purity and characterized for unsaturated disaccharides after treatment with bacterial lyases (heparinases for heparin and heparan sulfate samples, and chondroitinases for dermatan sulfate and chondroitin sulfate) and molecular mass. Bovine lung and heart Glycosaminoglycans were extracted and separated into single species by agarose-gel electrophoresis and recovered from gel matrix after treatment in cetyltrimethylammonium solution. Unsaturated disaccharides pattern, the sulfate to carboxyl ratio, and the molecular mass of each single polysaccharide species were determined.  相似文献   

20.
WISP-1 binds to decorin and biglycan   总被引:6,自引:0,他引:6  
Wnt-1-induced secreted protein 1 (WISP-1) is a member of the CCN (connective tissue growth factor, Cyr61, NOV) family of growth factors. Structural and experimental evidence suggests that CCN family member activities are modulated by their interaction with sulfated glycoconjugates. To elucidate the mechanism of action for WISP-1, we characterized the specificity of its tissue and cellular interaction and identified binding factors. WISP-1 binding was restricted to the stroma of colon tumors and to cells with a fibroblastic phenotype. By using a solid phase assay, we showed that human skin fibroblast conditioned media contained WISP-1 binding factors. Competitive inhibition with different glycosaminoglycans and treatment with glycosaminoglycan lyases and proteases demonstrated that binding to the conditioned media was mediated by dermatan sulfate proteoglycans. Mass spectrometric analysis identified the isolated binding factors as decorin and biglycan. Decorin and biglycan interacted directly with WISP-1 and inhibited its binding to components in the conditioned media. Similarly, WISP-1 interaction with human skin fibroblasts was inhibited by dermatan sulfate, decorin, and biglycan or by treatment of the cell surface with dermatan sulfate-specific lyases. Together these results demonstrate that decorin and biglycan are WISP-1 binding factors that can mediate and modulate its interaction with the surface of fibroblasts. We propose that this specific interaction plays a role in the regulation of WISP-1 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号