首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-Amyloid, a 39–43 amino acid peptide, may exert its biological effects via neuronal nicotinic acetylcholine receptors. Using the ratiometric dye, fura-2, we examined the effect of soluble β-amyloid1–42 on the concentration of intracellular Ca2+ ([Ca2+]i) in acutely dissociated rat basal forebrain neurons. Focal applications of nicotine (0.5–20 mM), evoked dose-dependent increases in intracellular [Ca2+]i that were mediated by the entry of extracellular Ca2+ via nicotinic acetylcholine receptors, and the release of intracellular Ca2+ from stores. With repeated nicotine challenges, the nicotinic responses were potentiated by 98 ± 12% (P < 0.05) while β-amyloid1–42 (100 nM) was present for ∼5 min. This potentiation became larger during the subsequent washout of β-amyloid1–42, which was associated with a gradual rise in baseline [Ca2+]i. Application of β-amyloid1–42 by itself did not alter [Ca2+]i, and β-amyloid1–42 also had no significant effect on the response to repeated KCl challenges. Therefore, β-amyloid1–42 caused neither gross disturbance of cellular Ca2+ homeostasis nor enhancement of voltage-gated Ca2+ channels. Interestingly, β-amyloid1–42 transiently potentiated the response to repeated caffeine challenges, which was also associated with a transient rise in baseline [Ca2+]i. β-amyloid1–42 potentiation of nicotine-evoked rises in [Ca2+]i was reversed by the SERCA pump inhibitor, thapsigargin, and the mitochondrial Na+/Ca2+ exchanger inhibitor, CGP-37157. These results suggest that the dysregulation of [Ca2+]i by β-amyloid1–42 during multiple challenges with nicotine or caffeine involved the sensitization or overfilling of intracellular stores that are maintained by SERCA pump and Ca2+ efflux from the mitochondria.  相似文献   

2.
Angiotensin II (AII) as well as analog peptides shows antimalarial activity against Plasmodium gallinaceum and Plasmodium falciparum, but the exact mechanism of action is still unknown. This work presents the solid‐phase synthesis and characterization of eight peptides corresponding to the alanine scanning series of AII plus the amide‐capped derivative and the evaluation of the antiplasmodial activity of these peptides against mature P. gallinaceum sporozoites. The Ala screening data indicates that the replacement of either the Ile5 or the His6 residues causes minor effects on the in vitro antiplasmodial activity compared with AII, i.e. AII (88%), [Ala6]‐AII (79%), and [Ala5]‐AII (75%). Analogs [Ala3]‐AII, [Ala1]‐AII, and AII‐NH2 showed antiplasmodial activity around 65%, whereas the activity of the [Ala8]‐AII, [Ala7]‐AII, [Ala4]‐AII, and [Ala2]‐AII analogs is lower than 45%. Circular dichroism data suggest that AII and the most active analogs adopt a β‐fold conformation in different solutions. All AII analogs, except [Ala4]‐AII and [Ala8]‐AII, show contractile responses and interact with the AT1 receptor, [Ala5]‐AII and [Ala6]‐AII. In conclusion, this approach is helpful to understand the contribution of each amino acid residue to the bioactivity of AII, opening new perspectives toward the design of new sporozoiticidal compounds. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
α-Melanotropin (α-MSH) retains less than 1% of its original activity after a 60 min incubation with 10% rat brain homogenate. [Nle4, D-Phe7]-α-MSH is nonbiodegradable in rat serum (240 min incubation) and still maintains 10% of its original activity in 10% rat brain homogenate (240 min incubation). The related fragment analogue, Ac-[Nle4, D-Phe7]-α-MSH4–10-NH2, retains 50% of its activity after a 240 min incubation in rat brain homogenate, whereas Ac-[Nle4, D-Phe7]-α-MSH4–11-NH2 is totally resistant to inactivation by rat brain homogenate. Both [Nle4, D-Phe7]-fragments are resistant to degradation by rat serum, but [Nle4]-α-MSH, Ac-[Nle4]-α-MSH4–10-NH2 and Ac-[Nle4]-α-MSH4–11-NH2 are rapidly inactivated under both conditions. The cyclic melanotropin, [ ]-α-MSH, is inactivated in rat brain homogenate as is the shorter Ac-[ ]-α-MSH4–10-NH2 analogue, but neither cyclic melanotropin is inactivated upon incubation in serum from rats. Ac-[ ]-α-MSH4–10-NH2 is resistant to inactivation by either rat serum or a brain homogenate. Some of these melanotropin analogues may provide useful probes for the localization and characterization of putative melanotropin receptors in both the central nervous system and peripheral tissues.  相似文献   

4.
A labeling scheme is introduced that facilitates the measurement of accurate 13Cβ chemical shifts of invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. The approach makes use of protein over-expression in a strain of E. coli in which the TCA cycle enzyme succinate dehydrogenase is knocked out, leading to the production of samples with high levels of 13C enrichment (30–40%) at Cβ side-chain carbon positions for 15 of the amino acids with little 13C label at positions one bond removed (≈5%). A pair of samples are produced using [1-13C]-glucose/NaH12CO3 or [2-13C]-glucose as carbon sources with isolated and enriched (>30%) 13Cβ positions for 11 and 4 residues, respectively. The efficacy of the labeling procedure is established by NMR spectroscopy. The utility of such samples for measurement of 13Cβ chemical shifts of invisible, excited states in exchange with visible, ground conformations is confirmed by relaxation dispersion studies of a protein–ligand binding exchange reaction in which the extracted chemical shift differences from dispersion profiles compare favorably with those obtained directly from measurements on ligand free and fully bound protein samples.  相似文献   

5.
Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U–13C,15N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the 13C–13C and 13C–1H spin coupling networks (Kainosho et al. in Nature 440:52–57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [ζ2,ζ3-2H2; δ1,ε3,η2-13C3; ε1-15N]-indole ring ([12Cγ, 12Cε2] SAIL-Trp), which provides a more robust way to correlate the 1Hβ, 1Hα, and 1HN to the 1Hδ1 and 1Hε3 through the intra-residue NOEs. The assignment of the 1Hδ1/13Cδ1 and 1Hε3/13Cε3 signals can thus be transferred to the 1Hε1/15Nε1 and 1Hη2/13Cη2 signals, as with the previous type of SAIL-Trp, which has an extra 13C at the Cγ of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral β-methylene protons, which was 1Hβ2 in this experiment, one can determine the side-chain conformation of the Trp residue including the χ2 angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [12Cγ,12Cε2] SAIL-Trp for the 12 kDa DNA binding domain of mouse c-Myb protein (Myb-R2R3), which contains six Trp residues.  相似文献   

6.
Analogs of Ac-[Nle4]-α-MSH4–11-NH2 and Ac-[Nle4, D -Phe7]-α-MSH4–11-NH2 were prepared with D -isomeric replacements at the His6, Arg8, and Trp9 residues. The requirement for an indole moiety at position 9 also was evaluated by replacement with L -leucine in both parent fragment analogs. D -isomeric replacements at positions 6 and 8 in either series were detrimental to biological potency in frog (Rana pipiens) and lizard skin (Anolis carolinensis) in vitro melanotropic assays. However, Ac-[Nle4, D -Trp9]-α-MSH4–11-NH2 and Ac-[Nle4, D -Phe7, D -Trp9]-α-MSH4–11-NH2 were equipotent and 10 × more potent than Ac-[Nle4]-α-MSH4–11-NH2, respectively, in the lizard skin bioassay, and 30 and 1900 times more potent in the frog skin bioassay. Ac-[Nle4, D -Phe7, D -Trp9]-α-MSH4–11-NH2 was 3 × more potent than α-MSH in the frog skin bioassay. Proton nmr studies in aqueous solution revealed a marked preservation of the backbone conformation of these linear analogs. Chemical-shift variations due to the through-space anisotropic influence of the core aromatic amino acid residues permitted evaluation of side-chain topology. The observed topology was consistent with nonhydrogen-bonded β-like structure (? = ?139°, ψ = +135° for L -amino acids; ? = +139°, ψ = ?135° for D -amino acids) as the predominant solution conformation. The biological and conformational data suggest that high melanotropic potency requires a close spatial arrangement of the His6, Phe7, and Arg8 side chains.  相似文献   

7.
A mannan of Candida glabrata IFO 0622 digested by Arthrobacter exo-α-mannosidase and a β-1,2-linked mannobiose obtained from the parent mannan by acid treatment was analyzed using 13C nuclear magnetic resonance spectroscopy. The results show that the β-1,2-linked mannobiosyl residue is esterified to a phosphate group through position C-1 in the α-configuration, Manβ1– 2Manα1–HPO3–. The results of immunochemical assays of these mannans using the commercial antigenic factor sera of the genus Candida (Candida Check, Iatron) indicate that the main recognition site of serum no. 6 in this kit is the mannotetraosyl side-chain Manβ1–2Manα1– 2Manα1–2Man in C. glabrata mannan and also suggest that the phosphate-containing unit (such as Manβ1– 2Manα1–HPO3– in this mannan) behaves as one of the antigenic determinants of serum no. 6, but not of serum no. 5. Therefore, the present and previous findings indicate that serum no. 5 recognizes relatively longer β-1,2-linked oligomannosyl side-chains, Manβ1–[2Manβ1–]n 2Man (n = 1–6), attached to the phosphate groups previously observed in the cell wall mannans of Candida albicans, Candida stellatoidea, and Candida tropicalis. Received: 18 March 1997 / Accepted: 16 September 1997  相似文献   

8.
NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional [U-13C, 15N]-proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across disulfide bonds. We describe a robust approach for alleviating such difficulties, by using proteins selectively labeled with an equimolar mixture of (2R, 3S)-[β-13C; α,β-2H2] Cys and (2R, 3R)-[β-13C; α,β-2H2] Cys, but otherwise fully deuterated. Since either one of the prochiral methylene protons, namely β2 (proS) or β3 (proR), is always replaced with a deuteron and no other protons remain in proteins prepared by this labeling scheme, all four of the expected NOEs for the β-protons across disulfide bonds could be measured without any spin diffusion interference, even with long mixing times. Therefore, the NOEs for the β2 and β3 pairs across each of the disulfide bonds could be observed at high sensitivity, even though they are 25% of the theoretical maximum for each pair. With the NOE information, the disulfide bond connectivities can be unambiguously established for proteins with multiple disulfide bonds. In addition, the conformations around disulfide bonds, namely χ2 and χ3, can be determined based on the precise proton distances of the four β-proton pairs, by quantitative measurements of the NOEs across the disulfide bonds. The feasibility of this method is demonstrated for bovine pancreatic trypsin inhibitor, which has three disulfide bonds.  相似文献   

9.
Early detection of primary melanoma tumors is essential because there is no effective treatment for metastatic melanoma. Several linear and cyclic radiolabeled α-melanocyte stimulating hormone (α-MSH) analogs have been proposed to target the melanocortin type 1 receptor (MC1R) overexpressed in melanoma. The compact structure of a rhenium-cyclized α-MSH analog (Re-CCMSH) significantly enhanced its in vivo tumor uptake and retention. Melanotan II (MT-II), a cyclic lactam analog of α-MSH (Ac-Nle-cyclo[Asp-His-dPhe-Arg-Trp-Lys]-NH2]), is a very potent and stable agonist peptide largely used in the characterization of melanocortin receptors. Taking advantage of the superior biological features associated with the MT-II cyclic peptide, we assessed the effect of lactam-based cyclization on the tumor-seeking properties of α-MSH analogs by comparing the pharmacokinetics profile of the 99mTc-labeled cyclic peptide βAla-Nle-cyclo[Asp-His-d-Phe-Arg-Trp-Lys]-NH2 with that of the linear analog βAla-Nle-Asp-His-dPhe-Arg-Trp-Lys-NH2 in melanoma-bearing mice. We have synthesized and coupled the linear and cyclic peptides to a bifunctional chelator containing a pyrazolyl-diamine backbone (pz) through the amino group of βAla, and the resulting pz–peptide conjugates were reacted with the fac-[99mTc(CO)3]+ moiety. The 99mTc(CO)3-labeled conjugates were obtained in high yield, high specific activity, and high radiochemical purity. The cyclic 99mTc(CO)3-labeled conjugate presents a remarkable internalization (87.1% of receptor-bound tracer and 50.5% of total applied activity, after 6 h at 37 °C) and cellular retention (only 24.7% released from the cells after 5 h) in murine melanoma B16F1 cells. A significant tumor uptake and retention was obtained in melanoma-bearing C57BL6 mice for the cyclic radioconjugate [9.26 ± 0.83 and 11.31 ± 1.83% ID/g at 1 and 4 h after injection, respectively]. The linear 99mTc(CO)3-pz–peptide presented lower values for both cellular internalization and tumor uptake. Receptor blocking studies with the potent (Nle4,dPhe7)-αMSH agonist demonstrated the specificity of the radioconjugates to MC1R (74.8 and 44.5% reduction of tumor uptake at 4 h after injection for cyclic and linear radioconjugates, respectively).  相似文献   

10.
The effects of nociceptin(1–13)NH2 (N/OFQ(1–13)NH2) and its structural analogue [Orn9]N/OFQ(1–13)NH2 on acute carrageenan (CG)-induced peripheral inflammation and paw antioxidant status were studied. CG was injected intraplantarly in the right hind paw of rats and the volume of the inflamed paw was measured each 30 min for a period of 4h. When administered simultaneously with CG, N/OFQ(1–13)NH2 decreased the paw volume, whereas if injected 15 min before CG it had no effect. [Orn9]N/OFQ(1–13)NH2 produced the opposite effects at the same time-intervals of its administration. We also investigated whether these neuropeptides influence CG-induced changes in cell antioxidant system, especially at the 4th hour of CG administration. CG alone decreased the glutathione level and superoxide dismutase activity, as measured in post-nuclear homogenate of the inflamed paw. However, CG injection increased glutathione peroxidase and glucose-6-phospate dehydrogenase activities, while the activity of glutathione reductase was unchanged. The peptides themselves did not change all measured parameters. Moreover, neither N/OFQ(1–13)NH2 nor [Orn9]N/OFQ(1–13)NH2 modified CG-induced changes in the antioxidant status, regardless of the time of their injection (simultaneously or 15 min before CG). The present results suggest that N/OFQ(1–13)NH2 and [Orn9]N/OFQ(1–13)NH2 most likely affect the neuronal inflammation, rather than act as pro- or antioxidants.  相似文献   

11.
Summary Coupling of amino acids to 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) and 1,2,3,4-tetrahydro-7-hydroxyisoquinoline-3-carboxylic acid (HOTic) is difficult. In model experiments, use of 1-hydroxy-7-azabenzotriazole (HOAt) in combination with eitherN,N-diisopropylcarbodiimide (DIC) orO-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium (HATU) for activation was effective in solving coupling difficulties. Based on this finding, HOTic was then incorporated into the 20–31 fragment of human epidermal growth factor (hEGF). [Abu20, 31,HOTic22]hEGF(20–31)-NH2 was shown to be a ‘difficult sequence’, but replacement of the Tyr at position 29 with HOTic facilitates the complete dodecapeptide synthesis.  相似文献   

12.
Summary Syntheses are described of new endomorphin 1 and 2 peptoid–peptide hybrids in which Tyr1 and either one or both Phe3 and Phe4 have been replaced by N-substituted-glycine. The preparation is also described of two glycosylated Hyp2-endomorphin 2 analogues in which either 2,3,4,6-tetra-O-acetyl glucose or glucose are β-O-glycosidically linked to the hydroxyproline residue. The Hyp2-endomorphin sequences have also been elongate by adding a C-terminal β-alanine residue and several linear dimers have been prepared by coupling either the native peptides or the modified analogues. The cyclo endomorphin 2 has also been synthesized. Preliminary pharmacological experiments on isolated organ preparations showed that the agonist activities of both endomorphin 1 and 2 are not significantly affected by the Pro/Hyp substitution. Phe4/Nphe substitution in the endomorphin 1 reduced the potency on guinea pig ileum (GPI) by about 100 times and abolished the agonist activity on mouse vas deferens (MVD) preparation. The decrease of the agonist activity induced by modification of one phenylalanine residue only, either Phe3 or Phe4, is lower on endomorphin 2. Either modification of both Phe3 and Phe4 or glycosylation of the Hyp2-endomorphin 2 cancelled any agonist activity on both preparations. The linear peptide dimers [endomorphin 1]2, [endomorphin 2]2, [Hyp2-endomorphin 1]2, [Hyp2-endomorphin 2]2, [Hyp2-endomorphin 1-Hyp2-endomorphin 2]2 or [Hyp2-endomorphin 2-Hyp2-endomorphin 1]2, are 7–19 times less potent than endomorphin 1 on GPI and significantly less active than endomorphins 1 and 2 on MVD. The other afforded modifications significantly affected or abolished the agonist activity of the resulting endomorphin analogues on both GPI and MVD preparations.The α-amino acid residues are of the L-configuration. Standard abbreviations for amino acid derivatives and peptides are according to the suggestions of the IUPAC-IUB Commission on Biochemical Nomenclature (1984) Eur. J. Biochem., 138, 9–37. Abbreviations listed in the guide published in (2003) J. Peptide Sci., 9, 1–8 are used without explanation.  相似文献   

13.
Huang  Y.  Eglinton  G.  Ineson  P.  Bol  R.  Harkness  D. D. 《Plant and Soil》1999,216(1-2):35-45
The effects of nitrogen (N) fertilisation and elevated [CO2] on lipid biosynthesis and carbon isotope discrimination in birch (Betula pendula Roth.) transplants were evaluated using seedlings grown with and without N fertiliser, and under two concentrations of atmospheric CO2 (ambient and ambient+250 μmol mol-1) in solar dome systems. N fertilisation decreased n-fatty acid chain length (18:0/16:0) and the ratios of α-linolenate (18:2)/linoleate (18:1), whereas elevated [CO2] showed little effect on n-fatty acid chain length, but decreased the unsaturation (18:2+18:1)/18:0. Both N fertilisation and elevated [CO2] increased the quantity of leaf wax n-alkanes, whilst reducing that of n-alkanols by 20–50%, but had no simple response in fatty acid concentrations. 13C enrichment by 1–2.5‰ under N fertilisation was observed, and can be attributed to both reduced leaf conductance and increased photosynthetic consumption of CO2. Individual n-alkyl lipids of different chain length show consistent pattern of δ13C values within each homologue, but are in general 5–8‰ more depleted in 13C than the bulk tissues. Niether nitrogen fertilisation and elevated CO2 influenced the relationship between carbon isotope discrimination of the bulk tissue and the individual lipids. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The individual components of the backbone 15N CSA tensor, σ11, σ22, σ33, and the orientation of σ11 relative to the NH bond described by the angle β have been determined for uniformly labeled 15N, 13C ubiquitin from partial alignment in phospholipid bicelles, Pf1 phage, and poly(ethylene glycol) by measuring the residue-specific residual dipolar couplings and chemical shift deviations. No strong correlation between any of the CSA tensor components is observed with any single structural feature. However, the experimentally determined tensor components agree with the previously determined average CSA principal components [Cornilescu and Bax (2000) J. Am. Chem. Soc. 122, 10143–10154]. Significant deviations from the averages coincide with residues in β-strand or extended regions, while α-helical residue tensor components cluster close to the average values.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

15.
The metal–thiolate connectivity of recombinant Cd7-MT10 metallothionein from the sea mussel Mytilus galloprovincialis has been investigated for the first time by means of multinuclear, multidimensional NMR spectroscopy. The internal backbone dynamics of the protein have been assessed by the analysis of 15N T 1 and T 2 relaxation times and steady state {1H}–15N heteronuclear NOEs. The 113Cd NMR spectrum of mussel MT10 shows unique features, with a remarkably wide dispersion (210 ppm) of 113Cd NMR signals. The complete assignment of cysteine Hα and Hβ proton resonances and the analysis of 2D 113Cd–113Cd COSY and 1H–113Cd HMQC type spectra allowed us to identify a four metal–thiolate cluster (α-domain) and a three metal–thiolate cluster (β-domain), located at the N-terminal and the C-terminal, respectively. With respect to vertebrate MTs, the mussel MT10 displays an inversion of the α and β domains inside the chain, similar to what observed in the echinoderm MT-A. Moreover, unlike the MTs characterized so far, the α-domain of mussel Cd7-MT10 is of the form M4S12 instead of M4S11, and has a novel topology. The β-domain has a metal–thiolate binding pattern similar to other vertebrate MTs, but it is conformationally more rigid. This feature is quite unusual for MTs, in which the β-domain displays a more disordered conformation than the α-domain. It is concluded that in mussel Cd7-MT10, the spacing of cysteine residues and the plasticity of the protein backbone (due to the high number of glycine residues) increase the adaptability of the protein backbone towards enfolding around the metal–thiolate clusters, resulting in minimal alterations of the ideal tetrahedral geometry around the metal centres.  相似文献   

16.
In this work, the effects of iron ion intercalations on lead–tellurate glasses were investigated via FTIR, Raman and UV-Vis spectroscopies. This homogeneous glass system has compositions xFe2O3·(100−x)[4TeO2·PbO2], where x = 0–60 mol%. The presented observations in these mechanisms show that the lead ions have a pronounced affinity towards [TeO3] structural units, resulting in the deformation of the Te–O–Te linkages, and leading to the intercalation of [PbO n ] (n = 3, 4) and [FeO n ] (n = 4, 6) entities in the [TeO4] chain network. The formation of negatively charged [FeO4]1− structural units implies the attraction of Pb2+ ions in order to compensate for this electrical charge. Upon increasing the Fe2O3 content to 60 mol%, the network can accommodate an excess of oxygen through the formation of [FeO6] structural units and the conversion of [TeO4] into [TeO3] structural units. For even higher Fe2O3 contents, Raman spectra indicate a greater degree of depolymerization of the vitreous network than FTIR spectra do. The bands due to the Pb–O bond vibrations are very strongly polarized and the [TeO4] structural units convert into [TeO3] units via an intermediate coordination stage termed “[TeO3+1]” structural units. Our UV-Vis spectroscopic data show two mechanisms: (i) the conversion of the Fe3+ to Fe2+ at the same time as the oxidation of Pb2+ to Pb+4 ions for samples with low Fe2O3 contents; (ii) when the Fe2O3 content is high (x ≥ 50 mol%), the Fe2+ ions capture positive holes and are transferred to Fe3+ ions through a photochemical reaction, while the Pb2+ ions are formed by the reduction of Pb4+ ions. DFT calculations show that the addition of Fe2O3 to lead–tellurate glasses seems to break the axial Te–O bonds, and the [TeO4] structural units are gradually transformed into [TeO3+1]- and [TeO3]-type polyhedra. Analyzing these data further indicates a gradual conversion of the lead ions from covalent to ionic environment. There is then a charge transfer between the tri- and tetracoordinated tellurium atoms due to the capacity of the lead–tellurate network to form the appropriate coordination environments containing structural units of opposite charge, such as iron ions, [FeO4]1−.  相似文献   

17.
The tachykinins, substance P (SP) and neurokinin A (NKA), are agonists for the NK1 and NK2 receptors, respectively. Tachykinins have various respiratory effects, including bronchoconstriction. This study characterizes tachykinin binding sites in the rabbit lung. We hypothesize that (2-[125I]iodohistidyl1)Neurokinin A ([125I]NKA) interacts with NK1 and NK2 binding sites in the rabbit lung. The Kd determined from saturation isotherms was 0.69 X/÷1.14 nM (geometic mean X/÷ SEM) and the Bmax was 4.15±0.22 femtomole/mg protein (arithmetic mean±SEM). Competitive inhibition studies with NKA, SP and various selective tachykinin agonists showed the rank order of potency: [β-Ala8]-Neurokinin A 4–10=SP ≫ NKA ≫ [Sar9,Met(O2)11]-Substance P. [β-Ala8]-Neurokinin A 4–10, a selective NK2 agonist, and SP inhibition of [125I]NKA binding were best described using a two-site model. Competitive inhibition studies using the selective nonpeptide NK2 antagonist (SR 48968) and the selective nonpeptide NK1 antagonist (CP 96,345) revealed Ki's of 5.5 nM and 8.1 nM, respectively. Our data therefore suggest that [125I]NKA binds to both the NK1 and NK2 receptors in the lung. Special issue dedicated to Dr. Kinya Kuriyama.  相似文献   

18.
Summary The solid-phase synthesis andin vitro assays on the glucose-induced insulin secretion from rat pancreatic islets of Langerhans with six new chimeric peptides were performed. All the peptides were built up of the N-terminal galanin (GAL) fragment or its analogues, linked to the C-terminal portion of substance P (SP) analogues or scyliorhinin I (SCY-I) analogues. Two strong antagonists of the inhibitory effect of galanin on the glucose-induced insulin release were found: [cycloleucine4]GAL(1–13)-SP(5–11)-amide and GAL(1–13)-[L-norleucine10]SCY-I(3–10)-amide.  相似文献   

19.
The photosynthetic purple bacteria such as Rb. sphaeroides possesses an intracytoplasmic membrane (ICM) and a variety of pigment-binding membrane proteins located in the ICM, acting as photoreceptor. Such photosynthetic apparatus is concentrated in the ICM. It is composed of three multimeric membrane-bound proteins; light-harvesting complexes (LH 1, LH 2), a reaction center (RC) and a cytochrome b/c1 complex. We have purified these membranes, which are called chromatophores, and characterized the structure and dynamics of the photosynthetic membrane-bound proteins by means of multi-nuclear solid state NMR. First, the isotropic chemical shift of carbonyl carbons in natural abundance and [1-13C] Phe labeled chromatophores indicates that the membrane-bound proteins take mainly the helical conformation. Second, the chemical shifts of side-chain resonances of uniformly 15N-labeled chromatophores indicate the side-chain histidine residue is mainly hydrogen bonded, whereas structural heterogeneity of arginine and lysine side-chains are probed by those wide distribution of 15N shifts. Thirdly, the [β-2H3]Ala and [ε-2H2]Tyr labeling of the chromatophores are performed and dynamics of the [β-2H]Ala and the [ε-2H2]Tyr labeled chromatophores are studied by means of 2H solid state NMR. The dynamics of [β-2H3]Ala is found to be a 108Hz three-site jump motion with 10° liberation along the Cα-Cβ bond axis. The 2H-NMR powder pattern spectrum of [ε-2H2] Tyr labeled chromatophores was interpreted with an averaged correlation time of 5×105 Hz with 180° two-fold flips, the result of the averaging of two kinds of split spectra in terms of motional time scale. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Comparison of cell-wall-bound extracellular proteinases (CEPs) from Lactobacillus paracasei (LBP) ssp. paracasei natural isolates BGHN14, BGAR75 and BGAR76 with Lactococcus lactis (LCL) ssp. cremoris Wg2, in their action on αS1-, β- and κ-casein was done. The CEPs of LBP strains were able to degrade αS1- and β-caseins and their caseinolytic specificity depended on the type of buffer used. These CEPs, compared with LCL Wg2, differ in four amino acid residues in small segments predicted to be involved in substrate binding. The most striking features of this comparison are the presence of Ala instead of Ser329 and the presence of Thr instead of Asn256 and Ala299, in the subtilisin-like region of the CEP in LBP natural isolates. Additional conservative amino acid substitution Leu to Ile364 was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号