首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microcosm-based approach was used to study impacts of plant and chemical factors on the fungal community structure of an upland acidic grassland soil. Seven plant species typical of both unimproved and fertilized grasslands were either left unamended or treated with lime, nitrogen or lime plus nitrogen. Fungal community structure was assessed by a molecular approach, fungal automated ribosomal intergenic spacer analysis (FARISA), while fungal biomass was estimated by measuring soil ergosterol content. Addition of nitrogen (with or without lime) had the largest effect, decreasing soil pH, fungal biomass and fungal ribotype number, but there was little corresponding change in fungal community structure. Although different plant species were associated with some changes in fungal biomass, this did not result in significant differences in fungal community structure between plant species. Addition of lime alone caused no changes in fungal biomass, ribotype number or community structure. Overall, fungal community structure appeared to be more significantly affected through interactions between plant species and chemical treatments, as opposed to being directly affected by changes in individual improvement factors. These results were in contrast to those found for the bacterial communities of the same soils, which changed substantially in response to chemical (lime and nitrogen) additions.  相似文献   

2.
秸秆覆盖免耕土壤细菌和真菌生物量与活性的研究   总被引:21,自引:0,他引:21  
土壤微生物生物量在土壤生态系统中具有非常重要的作用。大量的试验研究表明 ,土壤微生物生物量是植物营养元素的一个重要的源与库 ,生物量对土壤养分的调控作用 ,已经成为土壤培肥、耕作制度改革和作物栽培实践中的重要理论依据之一。自从Jenkinson提出了测定土壤微生物量的原理和概念以来 ,Jenkinson和 Powlson提出了测定微生物生物量的方法[16] ,Van De Werf和 Verstraete提出了土壤微生物生物量可以分为全微生物量和活动微生物量[10 ] ,Anderson和 Domsch提出了生物量与生物活性中细菌与真菌的比例为 2 2 /78% [8]。虽然生物量的研…  相似文献   

3.
Coniferous forests cover extensive areas of the boreal and temperate zones. Owing to their primary production and C storage, they have an important role in the global carbon balance. Forest disturbances such as forest fires, windthrows or insect pest outbreaks have a substantial effect on the functioning of these ecosystems. Recent decades have seen an increase in the areas affected by disturbances in both North America and Europe, with indications that this increase is due to both local human activity and global climate change. Here we examine the structural and functional response of the litter and soil microbial community in a Picea abies forest to tree dieback following an invasion of the bark beetle Ips typographus, with a specific focus on the fungal community. The insect-induced disturbance rapidly and profoundly changed vegetation and nutrient availability by killing spruce trees so that the readily available root exudates were replaced by more recalcitrant, polymeric plant biomass components. Owing to the dramatic decrease in photosynthesis, the rate of decomposition processes in the ecosystem decreased as soon as the one-time litter input had been processed. The fungal community showed profound changes, including a decrease in biomass (2.5-fold in the litter and 12-fold in the soil) together with the disappearance of fungi symbiotic with tree roots and a relative increase in saprotrophic taxa. Within the latter group, successive changes reflected the changing availability of needle litter and woody debris. Bacterial biomass appeared to be either unaffected or increased after the disturbance, resulting in a substantial increase in the bacterial/fungal biomass ratio.  相似文献   

4.
When previously dried soil was remoistened, a series of microbial events occurred. The bacterial plate count population increased rapidly, with a doubling time of 4–5 h. The length of fungal hyphae and microscopic counts of bacteria increased more slowly. The microscopically counted bacterial population was estimated to have a doubling time of about 90 h. The respiratory burst occurring after 2–3 days coincided with the maximal growth rate of the bacterial plate count population. From the respiratory data, plate count bacteria were estimated to have a cell mass of 0.4 pg dry weight, whereas the mass of microscopically counted bacteria was only 10% of this. Changes in bacterial DNA content corresponded to changes in the microscopic count, whereas changes in soil catalase activity mainly corresponded to changes in the fungal biomass, which was dominant.It is suggested that bacterial plate counts and microscopic counts represent two distinct populations of bacteria, which for practical purposes may be termed zymogenous and autochthonous, respectively.  相似文献   

5.
Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short‐term effects of wildfire to the long‐term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition.  相似文献   

6.
The effects of nitrogen (N) fertilization (0-150 kg N ha?1 year?1 since 1865) and pH (3.3-7.4) on fungal and bacterial growth, biomass and phospholipid fatty acid (PLFA) composition were investigated in grassland soils from the 'Park Grass Experiment', Rothamsted Research, UK. Bacterial growth decreased and fungal growth increased with lower pH, resulting in a 50-fold increase in the relative importance of fungi between pH 7.4 and 3.3. The PLFA-based fungal:bacterial biomass ratio was unchanged between pH 4.5 and 7.4, and decreased only below pH 4.5. Respiration and substrate-induced respiration biomass both decreased three- to fourfold with lower pH, but biomass concentrations estimated using PLFAs were unaffected by pH. N fertilization did not affect bacterial growth and marginally affected fungal growth while PLFA biomass marker concentrations were all reduced by higher N additions. Respiration decreased with higher N application, suggesting a reduced quality of the soil organic carbon. The PLFA composition was strongly affected by both pH and N. A comparison with a pH gradient in arable soil allowed us to generalize the pH effect between systems. There are 30-50-fold increases in the relative importance of fungi between high (7.4-8.3) and low (3.3-4.5) pH with concomitant reductions of respiration by 30-70%.  相似文献   

7.
Changes in microbial biomass and activity were determined in a sandy-loam soil treated with successive dosages of oxytetracycline (a bactericide) or captan (a fungicide) throughout 98 days of incubation under laboratory conditions. The numbers of culturable bacteria and fungi, total bacterial and fungal biomass (as amounts of phospholipid fatty acids, PLFA), the fungal/bacterial ratio, activities of acid and alkaline phosphatases and urease as well as concentrations of N-NH4 + and N-NO3 were assessed. Both oxytetracycline and captan significantly decreased numbers of culturable bacteria whereas total bacterial biomass (bactPLFA) was not affected. Oxytetracycline did not effect on the fungal biomass, however their numbers were reduced after the first and second time of soil amendment with the bactericide. Conversely, fungal numbers and biomass (PLFA 18:2ω6,9) significantly decreased in response to soil treatment with the fungicide. Compared to oxytetracycline, captan significantly decreased activities of acid and alkaline phosphatases. For urease activity, the decreased activity was only observed in the soil after the third dosage of captan. Both biocides significantly increased concentrations of N-NH4 + and decreased concentrations of N-NO3 after the soil treatments. The results of this study indicate that successive soil treatment with oxytetracycline or captan dosages may negatively affect non-target soil microorganisms and their activities.  相似文献   

8.
Bacterial and fungal biomass was estimated in incubated samples of three cultivated soils, the influence of glucose, ammonium nitrate and cattle slurry on its formation being studied. The microbial biomass was determined in stained microscopic preparations of soil suspension. Bacterial biomass in the control samples was from 0.17 to 0.66 mg dry wt per 1 g dry soil and independently of the applied supplements was on the average two times larger in muck soils than in sand. Fungal biomass in the control soils ranged from 0.013 to 0.161 mg dry wt per 1 g dry soil, no relationship being found between its size and the soil type. As a result, the ratio of the size of fungal to bacterial biomass was dependent on the soil type; in sand the fungal biomass corresponded to 1/3 of the bacterial biomass, and in muck soils--only to 1/7.  相似文献   

9.
We determined the quantity and metabolic status of bacteria and fungi in rhizosphere and nonrhizosphere soil from microcosms containing ponderosa pine seedlings. Rhizosphere soil was sampled adjacent to coarse, fine, or young roots. The biovolume and metabolic status of bacterial and fungal cells was determined microscopically and converted to total and active biomass values. Cells were considered active if they possessed the ability to reduce the artificial electron acceptor 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT) to visible intracellular deposits of INT formazan. A colorimetric assay of INT formazan production was also used to assess dehydrogenase activity. INT-active microorganisms made up 44 to 55% of the microbial biomass in the soils studied. The proportion of fungal biomass that exhibited INT-reducing activity (40 to 50%) was higher than previous estimates of the active proportion of soil fungi determined by using fluorescein diacetate. Comparison between soils from different root zones revealed that the highest total and INT-active fungal biomass was adjacent to fine mycorrhizal roots, whereas the highest total and active bacterial biomass was adjacent to the young growing root tips. These observations suggest that fungi are enhanced adjacent to the fine roots compared with the nonrhizosphere soil, whereas bacteria are more responsive than fungi to labile carbon inputs in the young root zone. Colorimetric dehydrogenase assays detected gross differences between bulk and rhizosphere soil activity but were unable to detect more subtle differences due to root types. Determination of total and INT-active biomass has increased our understanding of the role of spatial compartmentalization of bacteria and fungi in rhizosphere carbon flow.  相似文献   

10.
Little information exists on the responses of soil fungal and bacterial communities in high elevation coniferous forest/open meadow ecosystems of the northwest United States of America to treatments that impact vegetation and soil conditions. An experiment was conducted in which soil cores were reciprocally transplanted between immediately adjacent forests and meadows at two high elevation (∼1,600 m) sites (Carpenter and Lookout) in the H.J. Andrews Experimental Forest located in the Cascade Mountains of Oregon. Half of the cores were placed in PVC pipe (closed) to prevent new root colonization, whereas the other cores were placed in mesh bags (open) to allow recolonization by fine roots. A duplicate set of open and closed soil cores was not transferred between sites and was incubated in place. After 2 year, soil cores were removed and changes in fungal and bacterial biomasses determined using light microscopy, and changes in microbial community composition determined by PLFA analysis, and by length heterogeneity PCR of the internal transcribed spacer region of fungal ribosomal DNA. At both sites soil microbial community structures had responded to treatments after 2 year of incubation. At Carpenter, both fungal and bacterial community structures of forest soil changed significantly in response to transfer from forest to meadow, with the shift in fungal community structure being accompanied by a significant decrease in the PLFA biomarker of fungal biomass,18:2ω6,9. At Lookout, both fungal and bacterial community structures of forest soil changed significantly in response to open versus closed core treatments, with the shift in the fungal community being accompanied by a significant decrease in the 18:2ω6,9 content of closed cores, and the shift in the bacterial community structure being accompanied by a significant increase in bacterial biomass of closed cores. At both sites, fungal community structures of meadow soils changed differently between open and closed cores in response to transfer to forest, and were accompanied by increases in the18:2ω6,9 content of open cores. Although there were no significant treatment effects on the bacterial community structure of meadow soil at either site, bacterial biomass was significantly higher in closed versus open cores regardless of transfer.  相似文献   

11.
Fertiliser application can not only influence plant communities, but also the soil microbial community dynamics, and consequently soil quality. Specifically, mineral fertilisation can directly or indirectly affect soil chemical properties, microbial abundance and, the structure and diversity of soil microbial communities. We investigated the impact of six different mineral fertiliser regimes in a maize/soybean rotation system: control (CK, without fertilisation), PS (application of phosphorus plus sulphur), NS (application of nitrogen plus S), NP (application of N plus P), NPS (application of N, P plus S) and NPSm (application of N, P, S plus micronutrients). Soil samples were collected at the physiological maturity stage of maize and soybean in March of 2013 and 2014, respectively. Overall, mineral fertilisation resulted in significantly decreased soil pH and increased total organic carbon compared with the control (CK). The analysis of terminal restriction fragment length polymorphism (T‐RFLP) revealed that mineral fertilisers caused a shift in the composition of both bacterial and fungal communities. In 2013, the highest value of Shannon diversity of bacterial terminal restriction fragments (TRFs) was found in control soils. In 2014, NPSm treated soils showed the lowest values of diversity for both bacterial and fungal TRFs. In both crop growing seasons, the analysis of phospholipid fatty acid (PLFA) detected the lowest value of total microbial biomass under CK. As PLFA analysis can be used to evaluate total microbial community, this result suggests that fertilisation increased total microbial biomass. When the bacterial and fungal abundance were examined using real time polymerase chain reaction, the results revealed that mineral fertilisation led to decreased bacterial abundance (16S rRNA), while fungal abundance (18S rRNA) was found to be increased in both crop growing seasons. Our results show that mineral fertiliser application has a significant impact on soil properties, bacterial and fungal abundance and microbial diversity. However, further studies are needed to better understand the mechanisms involved in the changes to microbial communities as a consequence of mineral fertilisation.  相似文献   

12.
A microscopic technique utilizing dispersion of fungal hyphae in a Waring blender, filtration through membrane filters (Nucleopore Corp.), and counting on a fluorescence microscope was developed for counting fungal hyphal biomass. Nonfluorescent staining techniques of the soil-filter preparation did not give quantitative recoveries. Water-soluble aniline blue, which binds to the beta-1,3-glucans of the fungal cell wall, made visualization of the hyphae by fluorescence possible. A range of fungi added to soil were quantitatively recovered. Adenosine 5'-triphosphate (ATP) was extracted from soil by lysis of the organisms with CHCl(3) in NaHCO(3), which prevented adsorption of the organic phosphorus to the soil colloids. Centrifugation and removal of CHCl(3) was followed by dilution with pH 7.8 tris(hydroxymethyl)aminomethane buffer. ATP concentrations were measured by using the luciferase-luciferin light reaction. Since NaHCO(3) interfered to some extent with this reaction, the standards were made up in equivalent mixtures of tris(hydroxymethyl)aminomethane buffer and NaHCO(3). Recovery of ATP was rapid and quantitative in a range of soils. Measurement of the ATP and bacterial and fungal numbers in an incubated soil showed that fungal and bacterial population increases were delayed by phosphorus deficiency. Microbial populations were not affected at a later date. The ATP content of the soil system was reduced by phosphorus deficiency throughout the incubation period. This indicated that ATP could be altered without major changes in the microbial populations.  相似文献   

13.
Wildfires subject soil microbes to extreme temperatures and modify their physical and chemical habitat. This might immediately alter their community structure and ecosystem functions. We burned a fire-prone shrubland under controlled conditions to investigate (1) the fire-induced changes in the community structure of soil archaea, bacteria and fungi by analysing 16S or 18S rRNA gene amplicons separated through denaturing gradient gel electrophoresis; (2) the physical and chemical variables determining the immediate shifts in the microbial community structure; and (3) the microbial drivers of the change in ecosystem functions related to biogeochemical cycling. Prokaryotes and eukaryotes were structured by the local environment in pre-fire soils. Fire caused a significant shift in the microbial community structure, biomass C, respiration and soil hydrolases. One-day changes in bacterial and fungal community structure correlated to the rise in total organic C and NO(3)(-)-N caused by the combustion of plant residues. In the following week, bacterial communities shifted further forced by desiccation and increasing concentrations of macronutrients. Shifts in archaeal community structure were unrelated to any of the 18 environmental variables measured. Fire-induced changes in the community structure of bacteria, rather than archaea or fungi, were correlated to the enhanced microbial biomass, CO(2) production and hydrolysis of C and P organics. This is the first report on the combined effects of fire on the three biological domains in soils. We concluded that immediately after fire the biogeochemical cycling in Mediterranean shrublands becomes less conservative through the increased microbial biomass, activity and changes in the bacterial community structure.  相似文献   

14.
Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P. elliottii plantations.  相似文献   

15.
Parameters characterizing the structure of the decomposer food web, biomass of the soil microflora (bacteria and fungi) and soil micro-, meso- and macrofauna were studied at 14 non-reclaimed 1– 41-year-old post-mining sites near the town of Sokolov (Czech Republic). These observations on the decomposer food webs were compared with knowledge of vegetation and soil microstructure development from previous studies. The amount of carbon entering the food web increased with succession age in a similar way as the total amount of C in food web biomass and the number of functional groups in the food web. Connectance did not show any significant changes with succession age, however. In early stages of the succession, the bacterial channel dominated the food web. Later on, in shrub-dominated stands, the fungal channel took over. Even later, in the forest stage, the bacterial channel prevailed again. The best predictor of fungal bacterial ratio is thickness of fermentation layer. We argue that these changes correspond with changes in topsoil microstructure driven by a combination of plant organic matter input and engineering effects of earthworms. In early stages, soil is alkaline, and a discontinuous litter layer on the soil surface promotes bacterial biomass growth, so the bacterial food web channel can dominate. Litter accumulation on the soil surface supports the development of the fungal channel. In older stages, earthworms arrive, mix litter into the mineral soil and form an organo-mineral topsoil, which is beneficial for bacteria and enhances the bacterial food web channel.  相似文献   

16.
Drying and rewetting is a frequent physiological stress for soil microbial communities; a stress that is predicted to grow more influential with future climate change. We investigated the effect of repeated drying–rewetting cycles on bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth, on the biomass concentration and composition (PLFA), and on the soil respiration. Using different plant material amendments, we generated soils with different initial fungal:bacterial compositions that we exposed to 6–10 repetitions of a drying–rewetting cycle. Drying–rewetting decreased bacterial growth while fungal growth remained unaffected, resulting in an elevated fungal:bacterial growth ratio. This effect was found irrespective of the initial fungal:bacterial biomass ratio. Many drying–rewetting cycles did not, however, affect the fungal:bacterial growth ratio compared to few cycles. The biomass response of the microbial community differed from the growth response, with fungal and total biomass only being slightly negatively affected by the repeated drying–rewetting. The discrepancy between growth- and biomass-based assessments underscores that microbial responses to perturbations might previously have been misrepresented with biomass-based assessments. In light of this, many aspects of environmental microbial ecology may need to be revisited with attention to what measure of the microbial community is relevant to study.  相似文献   

17.
本研究以中亚热带地区广泛分布的毛竹林为对象,采用随机区组实验设计,分析了林下植物剔除对毛竹林土壤微生物群落结构和土壤理化特性的影响,探讨林下植物对毛竹林土壤微生物群落结构的调控机制。结果表明: 林下植物剔除对土壤理化特性产生显著影响,主要表现为土壤全氮、 硝态氮和有效磷含量增加,而土壤铵态氮、全磷含量及土壤pH值降低。此外,林下植物剔除显著降低了总微生物和细菌(B)的PLFAs,增加了真菌(F)PLFAs,从而增加了F/B值。冗余分析表明,林下植物剔除驱动下的土壤pH值降低是土壤真菌含量增加的主要原因;而全磷含量及pH值的降低是土壤细菌含量显著降低的主要原因,其中i14:0、i15:0及i16:0含量的降低主导了细菌总量的降低。毛竹林剔除林下植物降低了土壤微生物生物量,使微生物群落结构由细菌为主导向真菌为主导转移,可能降低微生物的分解功能。建议在发展毛竹人工林过程中保留林下植物。  相似文献   

18.
Natural ecosystems provide services to agriculture such as pest control, soil nutrients, and key microbial components. These services and others in turn provide essential elements that fuel biomass productivity. Responsible agricultural management and conservation of natural habitats can enhance these ecosystem services. Vineyards are currently driving land‐use changes in many Mediterranean ecosystems. These land‐use changes could have important effects on the supporting ecosystems services related to the soil properties and the microbial communities associated with forests and vineyard soils. Here, we explore soil bacterial and fungal communities present in sclerophyllous forests and organic vineyards from three different wine growing areas in central Chile. We employed terminal restriction fragment length polymorphisms (T‐RFLP) to describe the soil microbial communities inhabiting native forests and vineyards in central Chile. We found that the bacterial community changed between the sampled growing areas; however, the fungal community did not differ. At the local scale, our findings show that fungal communities differed between habitats because fungi species might be more sensitive to land‐use change compared to bacterial species, as bacterial communities did not change between forests and vineyards. We discuss these findings based on the sensitivity of microbial communities to soil properties and land‐use change. Finally, we focus our conclusions on the importance of naturally derived ecosystem services to vineyards.  相似文献   

19.
A microscopic technique utilizing dispersion of fungal hyphae in a Waring blender, filtration through membrane filters (Nucleopore Corp.), and counting on a fluorescence microscope was developed for counting fungal hyphal biomass. Nonfluorescent staining techniques of the soil-filter preparation did not give quantitative recoveries. Water-soluble aniline blue, which binds to the β-1,3-glucans of the fungal cell wall, made visualization of the hyphae by fluorescence possible. A range of fungi added to soil were quantitatively recovered. Adenosine 5′-triphosphate (ATP) was extracted from soil by lysis of the organisms with CHCl3 in NaHCO3, which prevented adsorption of the organic phosphorus to the soil colloids. Centrifugation and removal of CHCl3 was followed by dilution with pH 7.8 tris(hydroxymethyl)aminomethane buffer. ATP concentrations were measured by using the luciferase-luciferin light reaction. Since NaHCO3 interfered to some extent with this reaction, the standards were made up in equivalent mixtures of tris(hydroxymethyl)aminomethane buffer and NaHCO3. Recovery of ATP was rapid and quantitative in a range of soils. Measurement of the ATP and bacterial and fungal numbers in an incubated soil showed that fungal and bacterial population increases were delayed by phosphorus deficiency. Microbial populations were not affected at a later date. The ATP content of the soil system was reduced by phosphorus deficiency throughout the incubation period. This indicated that ATP could be altered without major changes in the microbial populations.  相似文献   

20.
Cool-season grasses commonly harbor fungal endophytes in their aerial tissues. However the effects of these symbionts on soil microbial communities have rarely been investigated. Our objective was to explore microbial community responses in soils conditioned by plants of the annual grass Lolium multiflorum with contrasting levels of infection with the endophyte Neotyphodium occultans. At the end of the host growing season, we estimated the functional capacity of soil microbial communities (via catabolic response profiles), the contribution of fungi and bacteria to soil activity (via selective inhibition with antibiotics), and the structure of both microbial communities by molecular analyses. Soil conditioning by highly infected plants affected soil catabolic profiles and tended to increase soil fungal activity. We detected a shift in bacterial community structure while no changes were observed for fungi. Soil responses became evident even without changes in host plant biomass or soil organic carbon or total nitrogen content, suggesting that the endophyte modified host rhizodepositions during the conditioning phase. Our results have implications for the understanding of the reciprocal interactions between above and belowground communities, suggesting that plant-soil feedbacks can be mediated by this symbiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号