首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Several bacterial pathogens secrete proteins into the host cells that act as GTPase-activating proteins (GAPs) for Rho-GTPases and convert GTP-bound active form to GDP-bound inactive form. However, no such effector molecule has been identified in Mycobacterium tuberculosis. In this study, we show that culture supernatant of M. tuberculosis H(37)Rv harbors a protein that stimulates the conversion of GTP-bound Rho-GTPases to the GDP-bound form. Nucleoside diphosphate kinase (Ndk) was identified as this culture supernatant protein that stimulated in vitro GTP hydrolysis by members of Rho-GTPases. The histidine-117 mutant of Ndk, which is impaired for autophosphorylation and nucleotide-binding activities, shows GAP activity. These results suggest that Ndk of M. tuberculosis functions as a Rho-GAP to downregulate Rho-GTPases, and this activity may aid in pathogenesis of the bacteria.  相似文献   

2.
The Escherichia coli MnmE protein is a 50-kDa multidomain GTPase involved in tRNA modification. Its homologues in eukaryotes are crucial for mitochondrial respiration and, thus, it is thought that the human protein might be involved in mitochondrial diseases. Unlike Ras, MnmE shows a high intrinsic GTPase activity and requires effective GTP hydrolysis, and not simply GTP binding, to be functionally active. The isolated MnmE G-domain (165 residues) conserves the GTPase activity of the entire protein, suggesting that it contains the catalytic residues for GTP hydrolysis. To explore the GTP hydrolysis mechanism of MnmE, we analyzed the effect of low pH on binding and hydrolysis of GTP, as well as on the formation of a MnmE transition state mimic. GTP hydrolysis by MnmE, but not GTP binding or formation of a complex with mant-GDP and aluminium fluoride, is impaired at acidic pH, suggesting that the chemistry of the transition state mimic is different to that of the true transition state, and that some residue(s), critical for GTP hydrolysis, is severely affected by low pH. We use a nuclear magnetic resonance (NMR)-based approach to get insights into the MnmE structure and properties. The combined use of NMR restraints and homology structural information allowed the determination of the MnmE G-domain structure in its free form. Chemical shift structure-based prediction provided a good basis for structure refinement and validation. Our data support that MnmE, unlike other GTPases, does not use an arginine finger to drive catalysis, although Arg252 may play a role in stabilization of the transition state.  相似文献   

3.
MnmE is a homodimeric multi-domain GTPase involved in tRNA modification. This protein differs from Ras-like GTPases in its low affinity for guanine nucleotides and mechanism of activation, which occurs by a cis, nucleotide- and potassium-dependent dimerization of its G-domains. Moreover, MnmE requires GTP hydrolysis to be functionally active. However, how GTP hydrolysis drives tRNA modification and how the MnmE GTPase cycle is regulated remains unresolved. Here, the kinetics of the MnmE GTPase cycle was studied under single-turnover conditions using stopped- and quench-flow techniques. We found that the G-domain dissociation is the rate-limiting step of the overall reaction. Mutational analysis and fast kinetics assays revealed that GTP hydrolysis, G-domain dissociation and Pi release can be uncoupled and that G-domain dissociation is directly responsible for the ‘ON’ state of MnmE. Thus, MnmE provides a new paradigm of how the ON/OFF cycling of GTPases may regulate a cellular process. We also demonstrate that the MnmE GTPase cycle is negatively controlled by the reaction products GDP and Pi. This feedback mechanism may prevent inefficacious GTP hydrolysis in vivo. We propose a biological model whereby a conformational change triggered by tRNA binding is required to remove product inhibition and initiate a new GTPase/tRNA-modification cycle.  相似文献   

4.
The major cellular inhibitors of the small GTPases of the Ras superfamily are the GTPase-activating proteins (GAPs), which stimulate the intrinsic GTP hydrolyzing activity of GTPases, thereby inactivating them. The catalytic activity of several GAPs is reportedly inhibited or stimulated by various phospholipids and fatty acids in vitro, indicating a likely physiological role for lipids in regulating small GTPases. We find that the p190 RhoGAP, a potent GAP for the Rho and Rac GTPases, is similarly sensitive to phospholipids. Interestingly, however, several of the tested phospholipids were found to effectively inhibit the RhoGAP activity of p190 but stimulate its RacGAP activity. Thus, phospholipids have the ability to "switch" the GTPase substrate preference of a GAP, thereby providing a novel regulatory mechanism for the small GTPases.  相似文献   

5.
The leukocyte response to chemoattractants is transduced by the interaction of transmembrane receptors with GTP-binding regulatory proteins (G-proteins). RGS1 is a member of a protein family constituting a newly appreciated and large group of proteins that act as deactivators of G-protein signaling pathways by accelerating the GTPase activity of G-protein alpha subunits. We demonstrate here that RGS1 is expressed in human monocytes; by immunofluorescence and subcellular fractionation RGS1 was localized to the plasma membrane. By using a mixture of RGS1 and plasma membranes, we were able to demonstrate GAP activity of RGS1 on receptor-activated G-proteins; RGS1 did not affect ligand-stimulated GDP-GTP exchange. We found that RGS1 desensitizes a variety of chemotactic receptors including receptors for N-formyl-methionyl-leucyl-phenylalanine, leukotriene B4, and C5a. Interaction of RGS proteins and ligand-induced G-protein signaling can be demonstrated by determining GTPase activity using purified RGS proteins and plasma membranes.  相似文献   

6.
Contraction reaction: mechanical regulation of Rho GTPase   总被引:2,自引:0,他引:2  
Epithelial cell differentiation is influenced by the physical environment. Local external changes in rigidity of the extracellular matrix are 'sensed' as increased or decreased tension and communicated intracellularly. The communications network that signals the state of the extracellular physical environment acts through the actin cytoskeleton to modulate Rho GTPase activity. A recent paper reports the surprising finding that breast epithelial cells respond to flexible surroundings by downregulating Rho activity through the actions of the Rho-regulated ROCK kinases.  相似文献   

7.
Ras redux: rethinking how and where Ras acts   总被引:6,自引:0,他引:6  
Ras proteins couple surface receptor stimulation to an ever-expanding array of effector pathways. The integrated activities of these signaling pathways result in a range of biological responses depending on cellular context and conditions. Decoding the various inputs that underlie Ras-induced proliferation and transformation, in particular, holds the promise of more effective cancer therapies. Recent findings have provided new and unexpected insights into the predominant pathways Ras employs to transform human cells and the subcellular platforms from which it can act.  相似文献   

8.
Mechanism of the microtubule GTPase reaction   总被引:5,自引:0,他引:5  
The rate of GTP hydrolysis by microtubules has been measured at tubulin subunit concentrations where microtubules undergo net disassembly. This was made possible by using microtubules stabilized against disassembly by reaction with ethylene glycol bis-(succinimidylsuccinate) (EGS) as sites for the addition of tubulin-GTP subunits. The tubulin subunit concentration was varied from 25 to 90% of the steady state concentration, and there was no net elongation of stabilized microtubule seeds. The GTPase rate with EGS microtubules was linearly proportional to the tubulin-GTP subunit concentration when this concentration was varied by dilution and by using GDP to compete with GTP for the tubulin E-site. The linear dependence of the rate is consistent with a GTP mechanism in which hydrolysis is coupled to the tubulin-GTP subunit addition to microtubule ends. It is inconsistent with reaction schemes in which: microtubules are capped by a single tubulin-GTP subunit, which hydrolyzes GTP when a tubulin-GTP subunit adds to the end; hydrolysis occurs primarily in subunits at the interface of a tubulin-GTP cap and the tubulin-GDP microtubule core; hydrolysis is not coupled to subunit addition and occurs randomly in subunits in a tubulin-GTP cap. It was also found that GDP inhibition of the microtubule GTPase rate results from GDP competition for GTP at the tubulin subunit E-site. There is no additional effect of GDP on the GTPase rate resulting from exchange into tubulin subunits at microtubule ends.  相似文献   

9.
In mammals, the casein locus consists of stretches of non-coding DNA, the functions of most of which are unknown. These regions are believed to harbour elements responsible for spatio-temporally regulated expression of genes in this locus and so far, only a few such elements have been identified. In this study, we report a novel regulatory element in the casein locus. Comparative analysis of genomic DNA sequences of casein loci from different mammals identified a 147 bp long evolutionarily conserved region (ECR) upstream of Odam, a gene in this locus. The ECR was found in close proximity of Odam gene in all the mammals examined. In-silico analysis predicted the ECR as a potential regulatory element. Functional analysis in different cell lines identified it as a unidirectional repressor element. From our findings we speculate that the ECR may be involved in the repression of the Odam expression in the mammary gland during lactation.  相似文献   

10.
The Escherichia coli MnmE protein is a three-domain protein that exhibits a very high intrinsic GTPase activity and low affinity for GTP and GDP. The middle GTPase domain, when isolated, conserves the high intrinsic GTPase activity of the entire protein, and the C-terminal domain contains the only cysteine residue present in the molecule. MnmE is an evolutionarily conserved protein that, in E. coli, has been shown to control the modification of the uridine at the wobble position of certain tRNAs. Here we examine the biochemical and functional consequences of altering amino acid residues within conserved motifs of the GTPase and C-terminal domains of MnmE. Our results indicate that both domains are essential for the MnmE tRNA modifying function, which requires effective hydrolysis of GTP. Thus, it is shown for the first time that a confirmed defect in the GTP hydrolase activity of MnmE results in the lack of its tRNA modifying function. Moreover, the mutational analysis of the GTPase domain indicates that MnmE is closer to classical GTPases than to GTP-specific metabolic enzymes. Therefore, we propose that MnmE uses a conformational change associated with GTP hydrolysis to promote the tRNA modification reaction, in which the C-terminal Cys may function as a catalytic residue. We demonstrate that point mutations abolishing the tRNA modifying function of MnmE confer synthetic lethality, which stresses the importance of this function in the mRNA decoding process.  相似文献   

11.
MnmE is an evolutionarily conserved, three domain GTPase involved in tRNA modification. In contrast to Ras proteins, MnmE exhibits a high intrinsic GTPase activity and requires GTP hydrolysis to be functionally active. Its G domain conserves the GTPase activity of the full protein, and thus, it should contain the catalytic residues responsible for this activity. In this work, mutational analysis of all conserved arginine residues of the MnmE G-domain indicates that MnmE, unlike other GTPases, does not use an arginine finger to drive catalysis. In addition, we show that residues in the G2 motif (249GTTRD253), which resides in the switch I region, are not important for GTP binding but play some role in stabilizing the transition state, specially Gly249 and Thr251. On the other hand, G2 mutations leading to a minor loss of the GTPase activity result in a non-functional MnmE protein. This indicates that GTP hydrolysis is a required but non-sufficient condition so that MnmE can mediate modification of tRNA. The conformational change of the switch I region associated with GTP hydrolysis seems to be crucial for the function of MnmE, and the invariant threonine (Thr251) of the G2 motif would be essential for such a change, because it cannot be substituted by serine. MnmE defects result in impaired growth, a condition that is exacerbated when defects in other genes involved in the decoding process are simultaneously present. This behavior is reminiscent to that found in yeast and stresses the importance of tRNA modification for gene expression.  相似文献   

12.
Rho GTPase functions have been carefully investigated for many years using cell biological models. In recent years, mouse models with targeted mutations in Rho GTPase genes enabled the study of Rho GTPase function in vivo, partially confirming and partially contradicting expectations based on earlier in vitro experiments. This review sums up recent findings on the role of Rho GTPases in development, underlining the importance of in vivo research for our understanding of Rho GTPases in living organisms, and describing challenges for the future.  相似文献   

13.
14.
ExoS is a bifunctional Type III cytotoxin of Pseudomonas aeruginosa with N-terminal Rho GTPase-activating protein (RhoGAP) and C-terminal ADP-ribosyltransferase domains. Although the ExoS RhoGAP inactivates Cdc42, Rac, and RhoA in vivo, the relationship between ExoS RhoGAP and the eukaryotic regulators of Rho GTPases is not clear. The present study investigated the roles of Rho GTPase guanine nucleotide disassociation inhibitor (RhoGDI) in the reorganization of actin cytoskeleton mediated by ExoS RhoGAP. A green fluorescent protein-RhoGDI fusion protein was engineered and found to elicit actin reorganization through the inactivation of Rho GTPases. Green fluorescent protein-RhoGDI and ExoS RhoGAP cooperatively stimulated actin reorganization and translocation of Cdc42 from membrane to cytosol, and a RhoGDI mutant, RhoGDI(I177D), that is defective in extracting Rho GTPases off the membrane inhibited the actions of RhoGDI and ExoS RhoGAP on the translocation of Cdc42 from membrane to cytosol. A human RhoGDI small interfering RNA was transfected into HeLa cells to knock down 90% of the endogenous RhoGDI expression. HeLa cells with knockdown RhoGDI were resistant to the reorganization of the actin cytoskeleton elicited by type III-delivered ExoS RhoGAP. This indicates that ExoS RhoGAP and RhoGDI function in series to inactivate Rho GTPases, in which RhoGDI extracting GDP-bound Rho GTPases off the membrane and sequestering them in cytosol is the rate-limiting step in Rho GTPase inactivation. A eukaryotic GTPase-activating protein, p50RhoGAP, showed a similar cooperativity with RhoGDI on actin reorganization, suggesting that ExoS RhoGAP functions as a molecular mimic of eukaryotic RhoGAPs to inactivate Rho GTPases through RhoGDI.  相似文献   

15.
Cuddapah S  Roh TY  Cui K  Jose CC  Fuller MT  Zhao K  Chen X 《PloS one》2012,7(5):e36365
Polycomb group (PcG) proteins are key chromatin regulators implicated in multiple processes including embryonic development, tissue homeostasis, genomic imprinting, X-chromosome inactivation, and germ cell differentiation. The PcG proteins recognize target genomic loci through cis DNA sequences known as Polycomb Response Elements (PREs), which are well characterized in Drosophila. However, mammalian PREs have been elusive until two groups reported putative mammalian PREs recently. Consistent with the existence of mammalian PREs, here we report the identification and characterization of a potential PRE from human T cells. The putative human PRE has enriched binding of PcG proteins, and such binding is dependent on a key PcG component SUZ12. We demonstrate that the putative human PRE carries both genetic and molecular features of Drosophila PRE in transgenic flies, implying that not only the trans PcG proteins but also certain features of the cis PREs are conserved between mammals and Drosophila.  相似文献   

16.
RF3 was initially characterized as a factor that stimulates translational termination in an in vitro assay. The factor has a GTP binding site and shows sequence similarity to elongation factors EF-Tu and EF-G. Paradoxically, addition of GTP abolishes RF3 stimulation in the classical termination assay, using stop triplets. We here show GTP hydrolysis, which is only dependent on the simultaneous presence of RF3 and ribosomes. Applying a new termination assay, which uses a minimessenger RNA instead of separate triplets, we show that GTP in the presence of RF3 stimulates termination at rate-limiting concentrations of RF1. We show that RF3 can substitute for EF-G in RRF-dependent ribosome recycling reactions in vitro. This activity is GTP-dependent. In addition, excess RF3 and RRF in the presence of GTP caused release of nonhydrolyzed fmet-tRNA. This supports previous genetic experiments, showing that RF3 might be involved in ribosomal drop off of peptidyl-tRNA. In contrast to GTP involvement of the above reactions, stimulation of termination with RF2 by RF3 was independent of the presence of GTP. This is consistent with previous studies, indicating that RF3 enhances the affinity of RF2 for the termination complex without GTP hydrolysis. Based on our results, we propose a model of how RF3 might function in translational termination and ribosome recycling.  相似文献   

17.
Transport within the endocytic pathway depends on a consecutive function of the endosomal Rab5 and the late endosomal/lysosomal Rab7 GTPases to promote membrane recycling and fusion in the context of endosomal maturation. We previously identified the hexameric BLOC-1 complex as an effector of the yeast Rab5 Vps21, which also recruits the GTPase-activating protein (GAP) Msb3. This raises the question of when Vps21 is inactivated on endosomes. We provide evidence for a Rab cascade in which activation of the Rab7 homologue Ypt7 triggers inactivation of Vps21. We find that the guanine nucleotide exchange factor (GEF) of Ypt7 (the Mon1-Ccz1 complex) and BLOC-1 both localize to the same endosomes. Overexpression of Mon1-Ccz1, which generates additional Ypt7-GTP, or overexpression of activated Ypt7 promotes relocalization of Vps21 from endosomes to the endoplasmic reticulum (ER), which is indicative of Vps21 inactivation. This ER relocalization is prevented by loss of either BLOC-1 or Msb3, but it also occurs in mutants lacking endosome–vacuole fusion machinery such as the HOPS tethering complex, an effector of Ypt7. Importantly, BLOC-1 interacts with the HOPS on vacuoles, suggesting a direct Ypt7-dependent cross-talk. These data indicate that efficient Vps21 recycling requires both Ypt7 and endosome–vacuole fusion, thus suggesting extended control of a GAP cascade beyond Rab interactions.  相似文献   

18.
19.
Protons as substitutes for sodium and potassium in the sodium pump reaction   总被引:6,自引:0,他引:6  
The role of protons as substitutes for Na+ and/or K+ in the sodium pump reaction was examined using inside-out membrane vesicles derived from human red cells. Na+-like effects of protons suggested previously (Blostein, R. (1985) J. Biol. Chem. 260, 829-833) were substantiated by the following observations: (i) in the absence of extravesicular (cytoplasmic) Na+, an increase in cytoplasmic [H+] increased both strophanthidin-sensitive ATP hydrolysis (nu) and the steady-state level of phosphoenzyme, EP, and (ii) as [H+] is increased, the Na+/ATP coupling ratio is decreased. K+-like effects of protons were evidenced in the following results: (i) an increase in nu, decrease in EP, and hence increase in EP turnover (nu/EP) occur when intravesicular (extracellular) [H+] is increased; (ii) an increase in the rate of Na+ influx into K+(Rb+)-free inside-out vesicles and (iii) a decrease in Rb+/ATP coupling occur when [H+] is increased. Direct evidence for H+ being translocated in place of cytoplasmic Na+ and extracellular K+ was obtained by monitoring pH changes using fluorescein isothiocyanate-dextran-filled vesicles derived from 4',4-diisothiocyano-2',2-stilbene disulfonate-treated cells. With the initial pHi = pHo = pH 6.2, a strophanthidin-sensitive decrease in pHi was observed following addition of ATP provided the vesicles contained K+. This pH gradient was abolished following addition of Na+. With alkali cation-free inside-out vesicles, a strophanthidin-sensitive increase in pH was observed upon addition of both ATP and Na+. The foregoing changes in pHi were not affected by the addition of tetrabutylammonium to dissipate any membrane potential and were not observed at pH 6.8. These ATP-dependent cardiac glycoside-sensitive proton movements indicate Na,K-ATPase mediated Na+/H+ exchange in the absence of extracellular K+ as well as H+/K+ exchange in the absence of cytoplasmic Na+.  相似文献   

20.
Small GTPases of the Ypt/Rab family are regulators of vesicular protein trafficking in exo-and endocytosis. GTPase-activating proteins (GAP) play an important role as down regulators of GTPases. We here report the molecular cloning of a novel GAP-encoding gene (GYP7, for GAP for Ypt7) by high expression from a Saccharomyces cerevisiae genomic library. The GYP7 gene encodes a hydrophilic protein with a molecular mass of 87 kDa. Comparison of its primary sequence with that of the three other known GAPs for transport GTPases, the yeast Gyp6 and Gyp1 proteins and the Rab3A-GAP from rat brain, shows similarity between the yeast GAPs only. Like GYP6 and GYP1, GYP7 is not essential for yeast cell viability. Gyp7p was able to most effectively accelerate the intrinsic GTPase activity of Ypt7p. It was also active, but to a lesser extent, on Ypt31p, Ypt32p and Ypt1p. Ypt6p, Sec4p and the human H-Ras protein did not serve as substrates. We also report the identification and cloning of a gene from the dimorphic yeast Yarrowia lipolytica that encodes a protein whose primary structure and biochemical activity are significantly related to those of Gyp7p from baker's yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号