首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Summary Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts ofVicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. “Laserassisted” patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.  相似文献   

2.
Plasma membranes of guard cells in epidermal peels of Vicia faba and Commelina communis can be made accessible to a patch-clamp pipet by removing a small portion (1-3 micrometers in diameter) of the guard cell wall using a microbeam of ultraviolet light generated by a nitrogen laser. Using this laser microsurgical technique, we have measured channel activity across plasma membranes of V. faba guard cells in both cell-attached and isolated patch configurations. Measurements made in the inside-out patch configuration revealed two distinct K(+)-selective channels. Major advantages of the laser microsurgical technique include the avoidance of enzymatic protoplast isolation, the ability to study cell types that have been difficult to isolate as protoplasts or for which enzymatic isolation protocols result in protoplasts not amenable to patch-clamp studies, the maintenance of positional information in single-channel measurements, reduced disruption of cell-wall-mediated signaling pathways, and the ability to investigate intercellular signaling through studies of cells remaining situated within tissue.  相似文献   

3.
Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.  相似文献   

4.
Sensory transduction and electrical signaling in guard cells   总被引:4,自引:3,他引:1       下载免费PDF全文
Guard cells are a valuable model system for the study of photoreception, ion transport, and osmoregulation in plant cells. Changes in stomatal apertures occur when sensing mechanisms within the guard cells transduce environmental stimull into the ion fluxes and biosynthesis of organic solutes that regulate turgor. The electrical events mediating sensory transduction in guard cells can be characterized with a variety of electrophysiological recording techniques. Recent experiments applying the patch clamp method to guard cell protoplasts have demonstrated activation of electrogenic pumps by blue and red light as well as the presence of potassium channels in guard cell plasmalemma. Light activation of electrogenic proton pumping and the ensuing gating of voltage-dependent ion channels appear to be components of sensory transduction of the stomatal response to light. Mechanisms underlying stomatal control by environmental signals can be understood by studying electrical events associated with ion transport.  相似文献   

5.
Ion transport processes at the plasma membrane of plant cells are frequently studied by applying membrane-patch voltage-clamp (patch–clamp) electrophysiological techniques to isolated protoplasts. As plants are composed of many tissues and cell types, and each tissue and cell type may be specialized to a particular function and possess a unique complement of transport proteins, it is important to certify the anatomical origin of the protoplasts used for patch–clamp studies. This paper describes a general molecular genetic approach to marking specific cell types for subsequent patch–clamp studies and presents a specific example: a comparison of the K+ currents in protoplasts from cortical and stelar cells of Arabidopsis roots. Transgenic Arabidopsis were generated in which the expression of green fluorescent protein (GFP) from Aequoria victoria was driven by the CaMV 35S promoter (line mGFP3). In roots of the transgenic mGFP3 line, visible fluorescence was restricted to the stele. Protoplasts were generated from roots of the mGFP3 line and K+ currents in non-fluorescent (cortical/epidermal) and fluorescent (stelar) protoplasts were assayed using patch–clamp techniques. It was found that both the frequency of observing inward rectifying K+ channel (IRC) activity and the relative occurrence of IRC compared to outward rectifying K+ channels were significantly lower in protoplasts from cortical/epidermal cells compared to cells of the stele. The presence of GFP did not affect the occurrence or biophysical properties of K+ channels. It is concluded that the generation of transgenic Arabidopsis expressing GFP in a cell-specific fashion is a convenient and reliable way to mark protoplasts derived from contrasting cell types for subsequent patch–clamp studies.  相似文献   

6.
The effect of cAMP on Ca(2+)-permeable channels from Arabidopsis thaliana leaf guard cell and mesophyll cell protoplasts was studied using the patch clamp technique. In the whole cell configuration, dibutyryl cAMP was found to increase a hyperpolarization-activated Ba(2+) conductance (I(Ba)). The increase of I(Ba) was blocked by the addition of GdCl(3). In excised outside-out patches, the addition of dibutyryl cAMP consistently activated a channel with particularly fast gating kinetics. Current/voltage analyses indicated a single channel conductance of approximately 13 picosiemens. In patches where we measured some channel activity prior to cAMP application, the data suggest that cAMP enhances channel activity without affecting the single channel conductance. The cAMP activation of these channels was reversible upon washout. The results obtained with excised patches indicate that the cAMP-activated I(Ba) seen in the whole cell configuration could be explained by a direct effect of cAMP on the Ca(2+) channel itself or a close entity to the channel. This work represents the first demonstration using patch clamp analysis of the presence in plant cell membranes of an ion channel directly activated by cAMP.  相似文献   

7.
Fusion of vesicular membranes with the plasma membrane during pressure-driven swelling of guard cell protoplasts was studied using patch clamp capacitance measurements. Hydrostatic pressure pulses were applied via the patch pipette and resulted in an immediate and linear increase in membrane capacitance, a parameter proportional to the surface area. In any given protoplast, pressure-stimulated increases in membrane capacitance could be provoked repetitively. However, the rate of rise in capacitance upon the same strength of stimulation decreased exponentially with time (tau = 4 min) for subsequent pressure stimuli. This process was the result of a desensitisation of the plasma membrane to mechanical forces. Incubation of guard cell protoplasts in cytochalasin D, which depolymerises actin filaments, nearly abolished this desensitisation process. These results suggest that membrane stretch initiates a reactive process that may fortify or stabilise the plasma membrane of guard cell protoplasts.  相似文献   

8.
Slow anion channels in the plasma membrane of guard cells have been suggested to constitute an important control mechanism for long-term ion efflux, which produces stomatal closing. Identification of pharmacological blockers of these slow anion channels is instrumental for understanding plant anion channel function and structure. Patch clamp studies were performed on guard cell protoplasts to identify specific extracellular inhibitors of slow anion channels. Extracellular application of the anion channel blockers NPPB and IAA-94 produced a strong inhibition of slow anion channels in the physiological voltage range with half inhibition constants (K1/2) of 7 and 10 [mu]M, respectively. Single slow anion channels that had a high open probability at depolarized potentials were identified. Anion channels had a main conductance state of 33 [plus or minus] 8 pS and were inhibited by IAA-94. DIDS, which has been shown to be a potent blocker of rapid anion channels in guard cells (K1/2 = 0.2 [mu]M), blocked less than 20% of peak slow anion currents at extracellular or cytosolic concentrations of 100 [mu]M. The pharmacological properties of slow anion channels described here differ from those recently described for rapid anion channels in guard cells, fortifying the finding that two highly distinct types or modes of voltage- and second messenger-dependent anion channel currents coexist in the guard cell plasma membrane. Bioassays using anion channel blockers provide evidence that slow anion channel currents play a substantial role in the regulation of stomatal closing. Interestingly, slow anion channels may also function as a negative regulator during stomatal opening under the experimental conditions applied here. The identification of specific blockers of slow anion channels reported here permits detailed studies of cell biological functions, modulation, and structural components of slow anion channels in guard cells and other higher plant cells.  相似文献   

9.
Summary A convenient and rapid isolation procedure for root cell protoplasts suitable for patch clamp experiments, was developed for root cells of tomato (Lycopersicon esculentum) andPlantago species, grown on hydroculture. The procedure is based on a minimal exposure of cells to cell wall degrading enzyme mixtures. After an incubation period of 30 min in a cell wall degrading enzyme mixture all free floating cells were discarded. Subsequently the root material was rinsed and a second group of cells, still present inside the tissue, was freed by application of mechanical pressure. The newly released protoplasts were filtered and collected on the glass bottom of a patch clamp dish. The bathing medium was rinsed extensively removing cellulose fibrils and protoplasts not attached to the glass. Removal of these cellulose fibrils significantly improved the seal success ratio. The isolated protoplasts were suitable for patch clamp experiments in the cell-attached patch, the whole cell and the isolated patch configuration.Abbreviations BSA bovine serum albumin - BTP bis-tris propane - CAP cell-attached patch - OOP outside out patch - PEG polyethylene glycol - WC whole cell  相似文献   

10.
Cosgrove DJ  Hedrich R 《Planta》1991,186(1):143-153
Mechanosensitive ion channels in the plasma membrane of Vicia faba guard cell protoplasts were studied by use of the patch clamp technique. Stretch-activated (SA) channels in outside-out patches were analyzed for channel conductance, kinetics and ion selectivity. We found three distinct SA channels, permeable to Cl, K+ and Ca2+ and distinguishable from spontaneous (non-SA) channels for these ions on the basis of conductance, kinetics, and voltage-dependence, as well as sensitivity to membrane stretch. In the attached patch configuration, light suction (2 to 10 kPa) reversibly induced channel opening with multiple amplitudes and complex kinetics. The open probability for SA channels increased nonlinearly with pipette suction. In guard cells in situ, these SA channels may mediate ion transport across the plasma membrane directly, as well as influence the activity of non-SA channels via effects on membrane voltage and cytoplasmic calcium. Through such effects, SA channels likely influence volume and turgor regulation of guard cells, and thereby control of leaf gas exchange.Abbreviations EK equilibrium potential for potassium transport - ECl equilibrium potential for chloride transport - SA stretchactivated Dedicated to the 80. birthday of Franz HedrichSupported by a grant from the Deutsche Forschungsgemeinschaft to R.H. and a Department of Energy grant to D.J.C. gratefully acknowledges a John S. Guggenheim Fellowship and Fulbright Kommission Senior Professor Award. We thank Ingrid Baumann and Angela Schön for technical assistance, and Klaus Raschke and Heiner Busch for spirited discussions and support.  相似文献   

11.
Trafficking of K+ inward (Kin+) rectifying channels was analyzed in guard cells of Vicia faba transfected with the Kin+ rectifier from Arabidopsis thaliana KAT1 fused to the green fluorescent protein (GFP). Confocal images and whole-cell patch-clamp measurements confirmed the incorporation of active KAT1 channels into the plasma membrane of transfected guard cell protoplasts. The Kin+ rectifier current density of the plasma membrane was much larger in transfected protoplasts than in wild-type (wt) protoplasts. This shows a coupling between K+ channel synthesis and incorporation of the channel into the plasma membrane. Pressure-driven increase and decrease in surface area led to the incorporation and removal of vesicular membrane carrying active Kin+ rectifier in wt and transfected protoplasts. These vesicular membranes revealed a higher channel density than the plasma membrane, suggesting that Kin+ rectifier remains in clusters during trafficking to and from the plasma membrane. The observed results can be explained by a model illustrating that vesicles of a pre-plasma membrane pool carry K+ channels preferentially in clusters during constitutive and pressure-driven exo- and endocytosis.  相似文献   

12.
Stomata are light‐activated biological valves in the otherwise gas‐impermeable epidermis of aerial organs of higher plants. Stomata often regulate rates of photosynthesis and transpiration in ways that optimize whole‐plant carbon gain against water loss. Each stoma is flanked by a pair of opposing guard cells. Stomatal opening occurs by light‐activated increases in the turgor pressure of guard cells, which causes them to change shape so that the stomatal pore between them widens. These increases in turgor pressure oppose increases in cellular osmotic pressure that result from uptake of K+. K+ uptake occurs by a chemiosmotic mechanism in response to light‐activated extrusion of H+ outward across the plasma membrane of the guard cell. The initial changes in cellular membrane potential lead to the opening of inward‐rectifying K+ channels, after which K+ is taken up along its electrochemical gradient. Changes in membrane potential resulting from K+ uptake may be balanced by accumulation of Cl?ions by guard cells and/or by synthesis of malic acid within each cell. Malic acid also acts to buffer increases in cytosolic pH caused by H+ extrusion. This review describes how the application of patch‐clamp technology to guard cell protoplasts has enabled investigators to elucidate the mechanisms by which H+ is extruded from guard cells, the types of ion channels present in the guard cell plasma membrane, how those ion channels are regulated, and the signal transduction processes that trigger stomatal opening and closing.  相似文献   

13.
For a number of mammalian ion channels, trafficking to the plasma membrane was found to be controlled by intrinsic sequence motifs. Among these sequences are diacidic motifs that function as endoplasmic reticulum (ER) export signals. So far it is unclear if similar motifs also exist in plant ion channels. In this study we analyzed the function of four diacidic DXE/DXD motifs of the plant K(+) channel KAT1. Mutation of the first diacidic DXE motif resulted in a strong reduction of the KAT1 conductance in both guard cell protoplasts and HEK293 cells (human embryonic kidney cells). Confocal fluorescence microscopy of guard cells expressing the mutated KAT1 fused to green fluorescent protein revealed localization of the mutated channel only in intracellular structures around the nucleus. These structures could be identified as part of the ER via coexpression of KAT1 fused to yellow fluorescent protein with an ER-retained protein (HDEL) fused to cyan fluorescent protein. Block of vesicle formation from the ER by overexpression of the small GTP-binding protein Sar1 fixed in its GDP-bound form led to retention of wild-type KAT1 in similar parts of the ER. Mutation of the three other diacidic motifs had no effect. Together, the results demonstrate that one diacidic motif of KAT1 is essential for ER export of the functional channel in both guard cell protoplasts and HEK293 cells. This suggests that trafficking of plant plasma membrane ion channels is controlled via a conserved mechanism.  相似文献   

14.
15.
Patch clamping whole-cell reeording techniques were apphed to study the inward K~ channels in Arabidopsis root cortex cells. The inward K~ -channels in the plasma membranes of the root cortex cell protoplasts were activated by hyperpolarized membrane potentials. The channels were highly selective tor K~ ions over Na~ ions. The channel activity was significantly inbibited by the external TEA(?) or Ba(?) The changes in cytoplasmic Ca~(2 ) concentrations did not affect the whole-cell inward K~ -currents. The possible asso(?)ation betw(?)en the channel selectivity to K~ and Na(?) ions and plant salt-tolerance was also discussed.  相似文献   

16.
Effects of abscisic acid on K+ channels in Vicia faba guard cell protoplasts   总被引:11,自引:0,他引:11  
Potassium channels were resolved in Vicia faba guard cell protoplasts by patch voltage-clamp. Whole-cell currents and single K+ channels had linear instantaneous current-voltage relations, reversing at the calculated Nernst potential for K+. Whole cell K+ currents activated exponentially during step depolarizations, with half-activation times of 400-450 msec at +80 mV and 90-110 msec at +150 mV. Single K+ channel conductance was 65 +/- 5 pS with a mean open time of 1.25 +/- 0.30 msec at 150 mV. Potassium channels were blocked by internal Cs+ and by external TEA+, but they were insensitive to external 4-aminopyridine. Application of 10 microM abscisic acid increased mean open time and caused long-lasting bursts of channel openings. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology.  相似文献   

17.
The inward rectified potassium current of Vicia faba guard cell protoplasts treated with acetylcholine (ACh) or the antagonists of its receptors were recorded by employing the patch clamp technique. The results show that ACh at lower concentrations increases the inward K current, in contrast, ACh at higher concentrations inhibits it. Treated with d-Tubocurarine (d-Tub), an antagonist of the nicotine ACh receptor (nAChR) inhibits the inward K current by 30%. Treated with atropine (Atr), an antagonist of the muscarine (Mus) ACh receptor (mAChR) also inhibits it by 36%. However, if guard cell protoplasts are treated with d-Tub and Atr together, the inward K current is inhibited by 60%-75%. Tetraethylammonium chloride (TEA), a strong inhibitor of K channels has no effect on the inward K current regulated by ACh, suggesting that there are inward K channels modulated by AChRs on the membrane of the guard cell protoplasts. These data demonstrate an ACh-regulated mechanism for stomatal movement.  相似文献   

18.
The inward rectified potassium current of Vicia faba guard cell protoplasts treated with acetylcholine (ACh) or the antagonists of its receptors were recorded by employing the patch clamp technique. The results show that ACh at lower concentrations increases the inward K+ current, in contrast, ACh at higher concentrations inhibits it. Treated with d-Tubocurarine (d-Tub), an antagonist of the nicotine ACh receptor (nAChR) inhibits the inward K+ current by 30%. Treated with atropine (Atr), an antagonist of the muscarine (Mus) ACh receptor (mAChR) also inhibits it by 36%.However,if guard cell protoplasts are treated with d-Tub and Atr together, the inward K+ current is inhibited by 60%-75%. Tetraethylammonium chloride (TEA), a strong inhibitor of K+ channels has no effect on the inward K+ current regulated by ACh, suggesting that there are inward K+ channels modulated by AChRs on the membrane of the guard cell protoplasts. These data demonstrate an ACh-regulated mechanism for stomatal movement.  相似文献   

19.
R Paliwal  G Costa  J J Diwan 《Biochemistry》1992,31(8):2223-2229
Patch clamp analysis of membranes reconstituted with a fraction isolated from detergent-solubilized mitochondrial membranes by affinity chromatography on immobilized quinine earlier indicated the presence of two classes of ion channels, of about 40- and 140-pS conductance in medium including 150 mM KCl. Now a 57-kDa constituent of the quinine-affinity column eluate has been identified as the 40-pS channel. Protein fractions derived from the quinine-affinity column eluate by preparative isoelectric focusing with a Rotofor cell have been reconstituted into phospholipid vesicle membranes by detergent dialysis, and vesicles have been enlarged for patch clamping by dehydration and rehydration. Voltage clamp analysis has been carried out on excised patches bathed symmetrically in buffered medium containing 150 mM KCl and 100 microM CaCl2. Patches of membrane incorporating the 57-kDa protein exhibit 40-pS conductance transitions. The magnitude of conductance transitions is similar when Na+ replaces K+ in the bathing medium, indicating little selectivity of the 40-pS channel for K+ relative to Na+. Another fraction derived from the quinine-affinity column eluate is found to contain the larger channel, now estimated to have an average conductance of about 130 pS. Patches of control membrane prepared in the same way but without protein exhibit no channel activity.  相似文献   

20.
Whole cell patch clamp recording performed on a planar glass chip   总被引:6,自引:0,他引:6       下载免费PDF全文
The state of the art technology for the study of ion channels is the patch clamp technique. Ion channels mediate electrical current flow, have crucial roles in cellular physiology, and are important drug targets. The most popular (whole cell) variant of the technique detects the ensemble current over the entire cell membrane. Patch clamping is still a laborious process, requiring a skilled experimenter to micromanipulate a glass pipette under a microscope to record from one cell at a time. Here we report on a planar, microstructured quartz chip for whole cell patch clamp measurements without micromanipulation or visual control. A quartz substrate of 200 microm thickness is perforated by wet etching techniques resulting in apertures with diameters of approximately 1 microm. The apertures replace the tip of glass pipettes commonly used for patch clamp recording. Cells are positioned onto the apertures from suspension by application of suction. Whole cell recordings from different cell types (CHO, N1E-115 neuroblastoma) are performed with microstructured chips studying K(+) channels and voltage gated Ca(2+) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号