首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Gyrodinium dorsum Kofoid responds photophobically to flashes of blue light. The photophobic response consists of a cessation of movement (stop-response). Without background light and after a flash fluence above 10 J m−2, 75–85% of the cells show a stop-response, while only 50% of the cells show this response at 5 J m−2. With a flash fluence of 5 J m−2, background light of different wavelengths either increases (614 nm. 5.5–18.2 μmol m−2 s−1) or decreases (700 nm, 18.4–36.0 μmol m−2 s−1) the stop-response. Two hypotheses for the mechanism of the modulation by background light of the photophobic response are discussed: an effect of light on the balance of the photosynthetic system (PS I/PS II) or an effect on a phytochrome-like pigment (Pr/Pfr). This study supports the idea that a phytochrome-like pigment works in combination with a blue light-absorbing pigment. It was also found that cells of Gyrodinium dorsum cultured in red light (39.8 μmol m−2) had a higher absorption in the red region of the absorption spectra than those cultured in white light (92.7 μmol m−2).  相似文献   

2.
In the subarctic moss Dicranum elongatum Schleich & Schwaegr., the level of total lipids and triacylglycerols (TAG) was high in late winter and spring and low in autumn and winter. Four-week exposure of field material to continuous light (135μmol m−2s−1) at 1°C resulted in a considerable increase in the amount of TAG in the autumn material acclimated to low temperatures and rhythmic light in the field. In contrast, the same treatment did not cause any increase in TAG in the spring material, acclimated to low temperatures and continuous light in the field. Results from experiments, in which moss cultivated for 4 months at 9°C on 12-h photoperiods (135μmol m−2s−1) was kept for 3 weeks at low temperatures (9°C and −3°C) either in continuous light (135 or 70 μmol m−2s−1) or with 12-h photoperiods (135 μmol m−2s−1), indicated that the TAG level was higher at higher light intensity. At 9°C it was also higher in continuous light of both intensities than in rhythmic light. These results strongly suggest that decreasing irradiance and decreasing daylength limits the accumulation of TAG in D. elongatum during autumn in the subarctic.  相似文献   

3.
Pea plants ( Pisum sativum L. ev. Greenfeast) were grown for 2 to 3 weeks in while (˜ 50 μmol photons m−2 s−1; 400–700 nm) or green (˜ 30 μmol photons m−2 s −1 400–700 nm) light (16 h day/8 h night), with or without far-red light. Supplementary far-red light decreased leaf area and increased internodal length in both white and green light, demonstrating that phytochrome influenced leaf size and plant growth. However, there was no effect of far-red light on chlorophyll a /chlorophyll b ratios, chlorophyll-protein composition, the stoichiometry of electron transport complexes or photosynthetic function of isolated thylakoids. These results suggest that phytochrome is ineffective in modulating the composition and function of thylakoids in pea plants grown at low irradiance. One possible explanation of the ineffectiveness of phytochrome on thylakoids is discussed in terms of the drastic attenuation of red relative to far-red light in green tissue.  相似文献   

4.
The effect of a temperature close to the freezing point (chilling) on the nitrate reductase system of leaf discs of Cucumis sativus L. cv. Kleine Groene Scherpe was determined in the absence and presence of light. The capacity of leaf discs in the light (250 μE m−2s−1) at 20°C to increase in vivo and in vitro nitrate reductase activity, was unaffected by chilling pretreatment in the dark, but 4 h of chilling pretreatment in the light (250 μE m−2s−1) decreased the capacity to less than 50% of the unchilled control. The chilling inhibition of the capacity to increase nitrate reductase activity was of a photooxidative nature since it only occurred in the presence of light and oxygen. Plants grown at a low light intensity (65 μE m−2s−1) lost 95% of their capacity to increase nitrate reductase activity, while plants grown at 195 μE m−2s−1 retained 80% of their nitrate reducing capacity after 6 h chilling pretreatment in the 250 μE m−2s−1 light. Previously induced nitrate reductase activity was also affected by light during chilling. A lag phase of 7 h preceded a fast phase of decrease in activity. Both in vivo and in vitro activity decreased to 15% of the control value after 18 h of chilling in the light. It is concluded that the induction mechanism of nitrate reductase is primarily affected by photooxidation during chilling. The decrease in nitrate reductase activity is attributed to a decrease in the amount of activity enzyme.  相似文献   

5.
Maize ( Zea mays L. hybrid ZP-704) and black pine ( Pinus nigra Arn.) were grown for five days at low fluence rate (0.4–4.0, μmol m–2 s−1) in blue or red light. Compared to red light of the same fluence rate, blue light effects in maize were repressive for the accumulation of Chita, b , carotenoids and light-harvesting complex-2 (LHC-2) proteins. The maximal reduction of proteins bound to the light-harvesting complex of photosystem 2 and pigments was attained at different fluence rate levels. In black pine, blue light compared to the red of the same fluence rate level either activated or reduced accumulation of pigments and LHC proteins, the effect being dependent on its fluence rate level. At fluence less than 3.0 μmol m−2 s−1 blue light was more efficient for the synthesis of Chi a, b and carotenoids, hut for LHC-2 complexes, fluence rates between 0.4 and 1.5 [μmol m−2 s−1 were more effective. In pine the effects of the two lights on the accumulation of pigments and LHC proteins were demonstrated separately and were dependent on fluence rate level. This suggests irradianoe-controlled activation/deactivation of the photoreceptor at the level of the cell.  相似文献   

6.
Abstract: The effects of solar ultraviolet radiation (UV) on carbon uptake, oxygen evolution and motility of marine phytoplankton were investigated in coastal waters at Kristineberg Marine Research Station on the west coast of Sweden (58° 30'N, 11° 30'E). The mean irradiances at noon above the water surface during the investigation period were: photosynthetic active radiation (PAR, 400–700 nm) 1670 μmol m−2 s−1; ultraviolet-A radiation (UV-A, 320–400 nm) 35.9 W m−2 and ultraviolet-B radiation (UV-B, 280–320 nm) 1.7 W m−2. UV-B radiation was much more attenuated with depth in the water column than were PAR and UV-A radiation. UV-B radiation could not be detected at depths greater than 100–150 cm. Inhibition of carbon uptake by UV-A and UV-B in natural phytoplankton populations was greatest at 50 cm depth and the effects of UV-B were greater than those of UV-A. At depths greater than 50 cm there was almost no effect of ultraviolet radiation on carbon uptake. PAR, UV-A and UV-B decreased oxygen evolution by the dinoflagellate Prorocentrum minimum . Inhibition of oxygen evolution was greater after 4 h than 2 h but it was not possible to distinguish the negative effects of the different light regimes. The motility of P. minimum was not affected by PAR, UV-A and UV-B. The importance of exposure of phytoplankton to different light regimes before being exposed to natural solar radiation is discussed.  相似文献   

7.
Light-induced generator potentials were examined in the liverwort Conocephalum conicum L. by applying sub-threshold light stimuli (400–750 nm). The fluenceresponse dependence was determined for various wavelengths. At low values of quantum flux density (less than 1 μmol m−2 s−1) the plant reacts to the light pulses with hyperpolarization which, with a rise in the pulse intensity, is masked by the depolarization of the transmembrane potential. The action spectrum of depolarization shares many features with the absorption specturm of photosynthetic pigments. Application of inhibitors and electron donors showed a predominant role of photosystem II in the formation of the generator potential. No significant Emerson enhancement was observed after simultaneous illumination with light beams of 650 and 700 nm.  相似文献   

8.
The effects of UV-C (254 nm), UV-A (365 nm) and broad-band UV (280–380 nm) on guard cells of Vicia faba L. cv. Long Pod were investigated in the presence of white light (450 μmol m−2 s−1). UV-C (7 μmol m−2 s−1) was found to cause leakage of 86Rb+ from guard cells, while UV-A (0.3 μmol m−2 s−1) stimulated increased uptake in these cells. A relatively small stimulatory effect was observed by broad-band UV (3 μmol m−2 s−1) during the first 30 min of irradiation with an apparent equilibration of influx and efflux thereafter. Leakage of 86Rb+ from guard cells continued despite the removal of UV-C and an increase in the amount of white light from 450 to 1500 μmol m−2 s−1, suggesting that membranes were irreversibly damaged. Irradiation of guard cells with UV-C for 30, 45 and 90 min indicated that these cells began to be affected already by 30 min UV-C irradiation.  相似文献   

9.
SUMMARY. Hippuris vulgaris was found growing down to a depth of 6 m in two clear-water lakes. Mean summer water temperatures of the epilimnia were 15–18°C. Midsummer photosynthetically available radiation, (PAR 400–700 nm) at 6 m was 100 μeinsteins m−2s−1. In the laboratory, shoots of H. vulgaris continued to elongate at temperatures of 15 and 20°C and at pressures of 1.0, 1.8 and 2.3 atm. (corresponding to 0 m, 8.0 m and 13.3 m depths of water, respectively) providing PAR was kept above 100 °E m−2s−1. Leaf primordia were initiated further from the apex in shoots grown under a pressure of 2.3 atm., but the site of initiation is not critical for the subsequent growth of leaves in H. vulgaris . Lacunae in shoots grown under a pressure of 2.3 atm. were also larger than those in control shoots, implying that pressure does not constrict air spaces. Root growth is not inhibited by a pressure of 2.3 atm. Field measurements and laboratory experiments indicate that in warm water, PAR is the environmental factor most likely to control the depth limits of H. vulgaris in the field.  相似文献   

10.
Abstract. Flux densities of water vapour and carbon dioxide were measured for a Mediterranean macchia canopy. Results show good agreement between the measured available energy and the sum of latent sensible and heat flux densities determined with the eddy correlation technique. Joint evaluation of the Bowen ratio, aerodynamic resistance, canopy resistance and the 'omega factor' suggests that the macchia canopy is intermediate in aerodynamic roughness between coniferous and deciduous canopies. Maximum daytime carbon flux densities ranged from -14 to -22(μnol m−2 s−1 on a ground area basis. The ratio of transpiration to assimilation (E/A) was a function of incident photo-synthetic photon flux density below about 400 μmol m−2s−1 and above it was fairly constant at 272 mol mol−1 (H2O/CO2). The relationship between carbon influx and canopy conductance was linear. Results show promising applications of the eddy correlation technique for evaluating physiological features of canopies, treated as unitary functional systems.  相似文献   

11.
Benzyladenine (BA) stimulated 5-aminolevulinic acid (ALA) accumulation in the presence of levulinic acid during illumination with 43 μmol m−2 s−1 light in excised etiolated cotyledons of cucumber ( Cucumis sativus L. cv. Aonagajibai). A short dark-pretreatment (6 h) with BA eliminated the lag phase of ALA accumulation. The rate of ALA accumulation during the steady-state phase in cotyledons pretreated with BA for a long period (14 h) was considerably accelerated compared to that in cotyledons pretreated with BA for 6 h. The rate of ALA accumulation during the lag phase was saturated at a very low light fluence (<1.4 μmol m−2 s−1) in both BA-pretreated and water-control cotyledons. The steady-state rate of ALA accumulation increased with increasing light fluence up to 43 μmol m−2 s−1 (parallel to that of Chl formation) in water-control cotyledons. In contrast, in cotyledons pretreated with BA for either 6 or 14 h, the steady-state rate reached a plateau at a very low light fluence. Based on the above results together with our finding that there are two components of Chl formation (M. Dei, 1984. Physiol. Plant. 62: 521–526) possible intermediate steps of Chl biosynthesis pathway affected by BA and light intensity are discussed.  相似文献   

12.
In darkness, sporalation of Penicillium claviforme Bainier CBS strain 126–23 was uniform. A single 10 J m−2 blue light pulse (in the range 360 to 520 nm) was sufficient to elicit an endogenous zonation rhythm (coremia formation); the higher the fluence, the longer the rhythm expression. The period was 30 to 36 h as long as sufficient fluence rate (3 μW m−2 for broad band blue light and 18.1 nmol m−2 s−1 for wavelengths 433, 457 or 465 nm) was continuously maintained; this rhythm became desynchronized in about a week. The period increased rapidly and reached 72 to 120 h as soon as the fluence rate was too low or dark was established. The 445,479 and 495 nm radiations evoked the rhythm in pulse experiments, whereas the rhythm was immediately desynchronized in continuous light. The participation of two photosensitive reactions in the rhythm regulation of P. claviforme is postulated.  相似文献   

13.
Light-dependent inhibition of photosynthetic electron transport by zinc   总被引:2,自引:0,他引:2  
The effects of zinc concentrations up to 400 μ M were examined on three photosynthetic electron transport reactions of thylakoids isolated from Pisum sativum L. cv. Meteor. Zinc (400 μ M ) had no effect on photosystem I mediated electron transport from reduced N,N,N',N'-tetramethyl- p -phenylenediamine to methyl viologen, but inhibited uncoupled electron flow from water to methyl viologen by ca 50% and to 2,6-dichlorophenol-indophenol (DCPIP) by ca 30% at saturating light levels. Zinc inhibition of DCPIP photoreduction was independent of the light intensity to which thylakoids were exposed. Decreasing the photon flux density below 400 μmol m−2 s−1 produced a logarithmic reduction in the zinc-induced inhibition of methyl viologen photoceduction; a stimulation of this reaction was observed below 80 μmol photons m−2 s−1. Increasing light intensity decreased the amount of zinc tightly bound to the thylakoid membranes, but increased the weakly associated zinc which could be removed by washing the membranes with buffer containing Mg2. The results suggest that zinc acts on the photosynthetic electron transport system at two sites. Site 1 is on the oxidizing side of photosystem 2 and the inhibition by zinc is independent of the light intensity. Site 2 is between photosystems 1 and 2 and the electron flow can be positively or negatively affected by zinc depending on the light intensity.  相似文献   

14.
The floating angiosperm Lemna gibba L. was exposed for 2 h to various combinations of photosynthetic photon flux densities and temperature. The extent of photoinhibition of photosynthesis was assayed by measuring the net CO2 uptake before and after a photoinhibitory treatment, and the time course for photoinhibition was studied. It was found that the maximum quantum yield and the light-saturated rate of CO2 uptake were affected by the interaction between light and temperature during the photoinhibitory treatment. At a constant photon flux density of 650 μmol m−2 s−1 the extent of photoinhibition increased with decreasing temperature showing that even a chilling-resistant plant like L. gibba is much more susceptible to photoinhibition at chilling temperatures. About 60% photoinhibition of the quantum yield for CO2 uptake could be obtained either by a high photon flux density of 1 750 μmol m−2 s−1 and 25°C or by a moderate photon flux density of 650 μmol m−2 s−1 and 3°C. The time courses of recovery from 60% photoinhibition produced by either of these two treatments were similar, indicating that the nature of the photoinhibition was intrinsically similar. The extent of photoinhibition was related to the amount of light absorbed in excess to what could be handled by photosynthesis at that temperature. The vital importance of photosynthesis in alleviating photoinhibition is discussed.  相似文献   

15.
Abstract: Very large numbers (3466 ml−1) of ciliated protozoa were found living beneath the oxic-anoxic boundary in a stratified freshwater pond. Most ciliates (96%) contained symbiotic algae ( Chlorella spp.). Peak abundance was in anoxic water with almost 1 mol free CO2 m−3 and a midday irradiance of 6 μmol photon m−2 s−1. Photosynthetic rate measurements of metalimnetic water indicated a light compensation point of 1.7 μmol photon m−2 s−1 which represents 0.6% of sub-surface light. We calculate that photosynthetic evolution of O2 by symbionts is sufficient to meet the demand of the host ciliates for 13 to 14 hours each day. Each 'photosynthetic ciliate' may therefore become an aerobic island surrounded by anoxic water.  相似文献   

16.
The schooling behaviour of Atlantic mackerel was studied in a large tank at different light intensities in the range 12.6–1.8 × 10−10μEs−1 m−2. Variable light intensity was produced by accurately controlling the current to a green light-emitting diode (LED) 3 m above the experimental tank. Under high light levels (1.8 × 10−6μEs−1 m−2) mackerel always formed a single school, whereas at lower levels (1.8 × 10−8μEs−1 m−2) they swam as individuals. At light levels down to 1.0 × 10−6μEs−1 m−2 the mean nearest neighbour distance in a school remained relatively constant (0.3–0.9 body lengths), and individual mackerel swam along a path which deviated from the position of their nearest neighbours by less than 14°. As light dropped below 1.8 × 10−7μEs−1 m−2, both nearest neighbour distance and heading angle between nearest neighbours increased, with mean values of 1–1.8 body lengths and 23–92°, respectively, at 1.8 × 10−9μEs−1 m−2. The results are discussed in terms of ambient light conditions in the sea.  相似文献   

17.
Broad-band UV-B radiation inhibited hypocotyl elongation in etiolated tomato ( Lycopersicon esculentum Mill. cv. Alisa Craig) seedlings. This inhibition could be elicited by < 3 μmol m−2 s−1 of UV-B radiation provided against a background of white light (> 620 μmol m−2 s−1 between 320 and 800 nm), and was similar in wild-type and phytochrome-1-deficient aurea mutant seedlings. These observations suggest that the effect of UV-B radiation is not mediated by phytochrome. An activity spectrum obtained by delivering 1 μmol m−2 s−1 of monochromatic UV radiation against a while light background (63 μmol m−2 s−1 showed maximum effectiveness around 300 nm, which suggests that DNA or aromatic residues in proteins are not the chromophores mediating UV-B induced inhibition of elongation. Chemicals that affect the normal (photo)chemistry of flavins and possibly pterins (KI, NaN, and phenylacetic acid) largely abolished the inhibitor) effect of broad-hand UV-B radiation when applied to the root zone before irradiation. KI was effective at concentrations < 10−4 M , which have been shown in vitro to be effective in quenching the triplet excited stales of flavins but not fluorescence from pterine or singlet states of flavins. Elimination of blue light or reduction of UV-A, two sources of flavin excitation, promoted hypocotyl elongation, but did not affect the inhibition of elongation evened by UV-B. Kl applied after UV-B irradiation had no effect on the inhibition response. Taken together these findings suggest that the chromophore of the photoreceptor system invoked in UV-B perception by tomato seedlings during de-etiolation may be a flavin.  相似文献   

18.
The main objective of the present work was to examine the effects of the red:far-red ratio (R:FR) prevailing during leaf development on the photosynthetic capacity of mature leaves. Plants of Phaseolus vulgaris L. cv. Balin de Albenga were grown from time of emergence in a controlled environment room, 25 ± 3°C, 12-h photoperiod, with different light treatments:a) high photosynthetic photon flux density (PPFD) = 800 μmol m−1 s−1+ high R:FR= 1.3;b) low PPFD= 300 μmol m−2 s−1+ high R:FR= 1.3; c) high PPFD=800 μmol m−2 s−1+ low R:FR= 0.7; d) low PPFD= 300 μmol m−2s−1+ low R:FR=0.7. With an R:FR ratio of 1.3, a decrease in irradiance during leaf growth reduced photosynthesis when measured at moderate to high PPFD; but when measured at low PPFD, leaves expanded under low irradiance actually had photosynthesis rates higher than those of leaves grown in high irradiance. A low R:FR ratio during development reduced the photosynthetic capacity of the leaves. In leaves expanded under R:FR = 0.7 and high irradiance photosynthesis was reduced by 42 to 89%, depending on the PPFD at which measurements were made, whereas for leaves developed at R:FR = 0.7 and low irradiance photosynthesis decreased by 21 to 24%, compared to leaves under R:FR = 1.3 and similar irradiance. The reduced photosynthetic capacity under R:FR = 0.7 and high irradiance. In natural environments, leaves may experience low R:FR conditions temporarily during their development, and this may affect their future photosynthetic capacity in full sunlight.  相似文献   

19.
The effects of photon flux density and temperature on net photosynthesis and transpiration rates of mature and immature leaves of three-year-old Japanese larch Larix kaempferi (Lamb.) Sarg. trees were determined with an infrared, differential open gas analysis system. Net photosynthetic response to increasing photon flux densities was similar for different foliage positions and stage of maturity. Light compensation was between 25 and 50 μmol m−2 s−1. Rates of photosynthesis increased rapidly at photon flux densities above the compensation level and became saturated between 800 and 1000 μmol m−2 s−1. Transpiration rates at constant temperature likewise increased with increasing photon flux density, and leveled off between 800 and 1000 μmol m−2 s−1. Photosynthetic response to temperature was determined in saturating light and was similar for all foliage positions; it increased steadily from low temperatures to an optimum range betweeen 15 and 21°C and then decreased rapidly above 21°C. Transpiration rate, however, increased continuously with rising temperature up to the experimental maximum. CO2 compensation concentrations for mature foliage varied between 58 and 59 μl l−1; however, foliage borne at the apex of the terminal leader compensated at 75 μl l−1. None of these data support the claim that Japanese larch possesses C4 photosynthetic characteristics.  相似文献   

20.
The circadian rhythm in growth of the red macroalga Porphyra umbilicalis (Linnaeus) J. Agardh was investigated under different spectral light conditions in laboratory-grown thalli. A free-running rhythm was observed in constant green or red light at irradiances of 2.5 to 20 μmol photons·m−2·s−1, whereas arhythmicity occurred in constant blue light at 6–20 μmol photons·m−2·s−1. The circadian oscillator controlling growth rhythmicity in Porphyra uses most of the visible sunlight spectrum and possibly multiple photoreceptors with a high sensitivity for blue light and a lower sensitivity for red light. This was inferred from three experimental results: (1) The free-running period, τ, of the growth rhythm decreased with increasing irradiance, from approximately 25 h at 2.5 μmol photons·m−2·s−1 to 22 h at 20 μmol photons·m−2·s−1 in red or green light, (2) Dark pulses of 3 h duration, interrupting otherwise continuous green or red light, caused advances during the subjective day and delays during the subjective night; the circadian oscillator in Porphyra can discriminate darkness from green or red light, and (3) Low-irradiance blue light pulses (2.5 μmol photons·m−2·s−1) shifted the growth rhythm in red light of higher irradiance (e.g. 10 μmol photons·m−2·s−1), and a strong, high amplitude, type 0 phase response curve was obtained that is usually observed with light pulses shifting a circadian rhythm in otherwise continuous darkness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号