首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the effects of environmental changes on extractablenitrate reductase activity are well documented, little attentionhas been paid to the response of nitrite reductase to similartreatments. We have followed changes in the level of extractable nitrateand nitrite reductase in the leaves of pea seedlings subjectedto different light, shade, drought, and nitrate treatments.In similarity to nitrate reductase, extractable nitrite reductaseincreases with availability of nitrate. However, it appearsthat the two enzyme activities show differential responses inplants exposed to drought conditions and in plants transferredto darkness. Nitrate reductase activity declines much more rapidlythan nitrite reductase. These observations and the varying influence of the other environmentaltreatments are discussed in relation to the different cellularlocations of nitrate and nitrite reductase. Key words: Environmental responses, Nitrate reductase, Nitrite reductase  相似文献   

2.
Synthesis and degradation of barley nitrate reductase   总被引:21,自引:13,他引:8       下载免费PDF全文
Nitrate and light are known to modulate barley (Hordeum vulgare L.) nitrate reductase activity. The objective of this investigation was to determine whether barley nitrate reductase is regulated by enzyme synthesis and degradation or by an activation-inactivation mechanism. Barley seedling nitrate reductase protein (cross-reacting material) was determined by rocket immunoelectrophoresis and a qualitative immunochemical technique (western blot) during the induction and decay of nitrate reductase activity. Nitrate reductase cross-reacting material was not detected in root or shoot extracts from seedlings grown without nitrate. Low levels of nitrate reductase activity and cross-reacting material were observed in leaf extracts from plants grown on nitrate in the dark. Upon nitrate induction or transfer of nitrate-grown etiolated plants to the light, increases in nitrate reductase activity were positively correlated with increases in immunological cross-reactivity. Root and shoot nitrate reductase activity and cross-reacting material decreased when nitrate-induced seedlings were transferred to a nitrate-free nutrient solution or from light to darkness. These results indicate that barley nitrate reductase levels are regulated by de novo synthesis and protein degradation.  相似文献   

3.
Nitrate reductase-deficient barley (Hordeum vulgare L.) mutants were assayed for the presence of a functional molybdenum cofactor determined from the activity of the molybdoenzyme, xanthine dehydrogenase, and for nitrate reductase-associated activities. Rocket immunoelectrophoresis was used to detect nitrate reductase cross-reacting material in the mutants. The cross-reacting material levels of the mutants ranged from 8 to 136% of the wild type and were correlated with their nitrate reductase-associated activities, except for nar 1c, which lacked all associated nitrate reductase activities but had 38% of the wild-type cross-reacting material. The cross-reacting material of two nar 1 mutants, as well as nar 2a, Xno 18, Xno 19, and Xno 29, exhibited rocket immunoprecipitates that were similar to the wild-type enzyme indicating structural homology between the mutant and wild-type nitrate reductase proteins. The cross-reacting materials of the seven remaining nar 1 alleles formed rockets only in the presence of purified wild-type nitrate reductase, suggesting structural modifications of the mutant cross-reacting materials. All nar 1 alleles and Xno 29 had xanthine dehydrogenase activity indicating the presence of functional molybdenum cofactors. These results suggest that nar 1 is the structural gene for nitrate reductase. Mutants nar 2a, Xno 18, and Xno 19 lacked xanthine dehydrogenase activity and are considered to be molybdenum cofactor deficient mutants. Cross-reacting material was not detected in uninduced wild-type or mutant extracts, suggesting that nitrate reductase is synthesized de novo in response to nitrate.  相似文献   

4.
A protein with molecular mass of 67 kilodaltons is immunoprecipitated from in vitro translated products obtained from rabbit reticulocyte lysate primed with polyadenylated RNA from nitrate treated illuminated pea seedlings. This protein resembles the native nitrite reductase because of its competitive elimination when immunoprecipitation of in vitro translated products was carried out in the presence of cold unlabeled nitrite reductase or in vivo labeled pea leaf extract. This protein is of slightly higher molecular weight than that of the native nitrite reductase. Proteinaceous extracts from chloroplasts convert the in vitro product to the same molecular weight as the native peptide. The conversion appears to occur in two steps. Polyadenylated RNA from nitrate deficient plants or from nitrate-treated plants transferred to darkness do not support the synthesis of nitrite reductase. It is concluded that nitrate and light modulate the synthesis of the enzyme nitrite reductase by regulating the availability of mRNA for the enzyme.  相似文献   

5.
Experiments were performed to determine whether conditions which cause the rapid loss of nitrate reductase activity in Neurospora crassa mycelia were accompanied by the loss of antigenically detectable nitrate reductase protein. When mycelia with nitrate reductase activity were transferred to ammonia media, there was a rapid loss in the reduced nicotinamide adenine dinucleotide-nitrate reductase activity plus the parallel loss of the reduced nicotinamide adenine dinucleotide-diaphorase and the reduced methyl viologen-nitrate reductase activities associated with the nitrate reductase. In addition, there was the loss of cross-reacting material to anti-nitrate reductase antisera that was concomitant with the loss of nitrate reductase activity. When mycelia were exposed to either ammonia plus cycloheximide, nitrate plus cycloheximide, or nitrogen-free media, or to media which lacked an assimilable carbon source, the amount of cross-reacting material declined in concert with the nitrate reductase activity. The mutant nit-6, which lacks nitrite reductase activity, was exposed to ammonia or nitrate plus cycloheximide media. The nitrate reductase and the amount of cross-reacting material declined together as in the wild-type mycelia. We conclude that the loss of nitrate reductase activity was accompanied by the specific loss of this protein and that no pool of inactivated nitrate reductase molecules existed.  相似文献   

6.
pBNiR1, a cDNA clone encoding part of the barley nitrite reductase apoprotein, was isolated from a barley (cv. Maris Mink) leaf cDNA library using the 1.85 kb insert of the maize nitrite reductase cDNA clone pCIB808 as a heterologous probe. The cDNA insert of pBNiR1 is 503 by in length. The nucleotide coding sequence could be aligned with the 3′ end of other higher plant nitrite reductase apoprotein cDNA sequences but diverges in the 3′ untranslated region. The whole-plant barley mutant STA3999, previously isolated from the cultivar Tweed, accumulates nitrite after nitrate treatment in the light, has very much lowered levels of nitrite reductase activity and lacks detectable nitrite reductase cross-reacting material due to a recessive mutation in a single nuclear gene which we have designated Nir1. STA3999 has the characteristics expected of a nitrite reductase apoprotein gene mutant. Here we have used pB-NiR1 in RFLP analysis to determine whether the mutation carried by STA3999 is linked to the nitrite reductase apoprotein gene locus Nii. An RFLP was identified between the wild-type barley cultivars Tweed (major hybridising band of 11.5 kb) and Golden Promise (major hybridising band of 7.5 kb) when DraI-digested DNA was probed with the insert from the partial barley nitrite reductase cDNA clone, pBNiR1. DraI-digested DNA from the mutant STA3999 also exhibited a major hybridising band of 11.5 kb after hybridisation with the insert from pBNiR1. F1 progeny derived from the cross between the cultivar Golden Promise and the homozygous nir1 mutant STA3999 were heterozygous for these bands as anticipated. Co-segregation of the Tweed RFLP band of 11.5 kb and the mutant phenotype (leaf nitrite accumulation after nitrate treatment/loss of detectable nitrite reductase cross-reacting material at Mr 63000) was scored in an F2 population of 312 plants derived from the cross between the cultivar Golden Promise and the homozygous mutant STA3999. The Tweed RFLP band of 11.5 kb and the mutant phenotype showed strict co-segregation (in approximately one quarter (84) of the 312 F2 plants examined). Only those F2 individuals heterozygous for the RFLP pattern gave rise to F3 progeny which segregated for the mutant phenotype. We conclude that the nir1locus and the nitrite reductase apoprotein gene Nii are very tightly linked.  相似文献   

7.
NAD+-specific glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from Escherichia coli was purified to homogeneity by a relatively simple procedure involving affinity chromatography on agarose–hexane–NAD+ and repeated crystallization. Rabbit antiserum directed against this protein produced one precipitin line in double-diffusion studies against the pure enzyme, and two lines against crude extracts of wild-type E. coli strains. Both precipitin lines represent the interaction of antibody with determinants specific for glyceraldehyde 3-phosphate dehydrogenase. Nine independent mutants of E. coli lacking glyceraldehyde 3-phosphate dehydrogenase activity all possessed some antigenic cross-reacting material to the wild-type enzyme. The mutants could be divided into three groups on the basis of the types and amounts of precipitin lines observed in double-diffusion experiments; one group formed little cross-reacting material. The cross-reacting material in crude cell-free extracts of several of the mutant strains were also tested for alterations in their affinity for NAD+ and their phosphorylative activity. The cumulative data indicate that the protein in several of the mutant strains is severely altered, and thus that glyceraldehyde 3-phosphate dehydrogenase is unlikely to have an essential, non-catalytic function such as buffering nicotinamide nucleotide or glycolytic-intermediate concentrations. Others of the mutants tested have cross-reacting material which behaved like the wild-type enzyme for the several parameters studied; the proteins from these strains, once purified, might serve as useful analogues of the wild-type enzyme.  相似文献   

8.
Riens B  Heldt HW 《Plant physiology》1992,98(2):573-577
In leaves of spinach plants (Spinacia oleracea L.) performing CO2 and NO3 assimilation, at the time of sudden darkening, which eliminates photosystem I-dependent nitrite reduction, only a minor temporary increase of the leaf nitrite content is observed. Because nitrate reduction does not depend on redox equivalents generated by photosystem I activity, a continuation of nitrate reduction after darkening would result in a large accumulation of nitrite in the leaves within a very short time, which is not observed. Measurements of the extractable nitrate reductase activity from spinach leaves assayed under standard conditions showed that in these leaves the nitrate reductase activity decreased during darkening to 15% of the control value with a half-time of only 2 minutes. Apparently, in these leaves nitrate reductase is very rapidly inactivated at sudden darkness avoiding an accumulation of the toxic nitrite in the cells.  相似文献   

9.
Nitrite reductase from green leaves of corn (Zea mays L.) is eluted from a diethylaminoethyl-cellulose column in one peak of activity by a chloride gradient, while nitrite reductase from scutellum tissue is resolved into two peaks of activity, apparently representing two forms of the enzyme NiR1 and NiR2. One of these (NiR2) elutes at the same concentration of chloride as the leaf nitrite reductase. Roots and etiolated shoots also exhibited both forms of the enzyme, however, lesser amounts of NiR1 is extractable from these tissues than from scutellum. Comparison of green leaf nitrite reductase with NiR2 from scutellum tissue shows similar or identical properties with respect to molecular weight, isoelectric point, electron donor requirements, inhibition properties, pH optima, thermal stability, and pH tolerance. The significance of these similarities in relation to probable differences in the biochemical mechanism of nitrite reduction between leaf and scutellum tissues is discussed. Although ferredoxin is considered, with some reservations, to be the electron donor for nitrite reductase in green tissue, the reductant for nongreen tissue is not known. The possibility that nitrite reductases from green and non-green tissues uses the same electron donor, in vivo, is considered.  相似文献   

10.
Three enzymes contribute to the total hydroxylamine reductase activity of corn (Zea mays L.) scutellum extracts. Two of these resemble enzymes previously prepared from leaves, while the third, which accounts for a major part of the activity, appears to have no counterpart in leaf tissue. One of the hydroxylamine reductases found only in small amounts is associated with nitrite reductase and is induced, together with nitrite reductase, by nitrite. The other two enzymes are noninducible by nitrite and can be totally separated from nitrite reductase, which subsequently remains capable of catalyzing the reduction of nitrite to ammonia. Possible causes of the decline of hydroxylamine reductase activity during the induction of nitrite reductase are discussed.  相似文献   

11.
Nitrite reductase (EC 1.6.6.4) prepared from pea roots was found to be immunologically indistinguishable from pea leaf nitrite reductase. Comparisons of the pea root enzyme with nitrite reductase from leaf sources showed a close similarity in inhibition properties, light absorption spectrum, and electron paramagnetic resonance signals. The resemblances indicate that the root nitrite reductase is a sirohaem enzyme and that it functions in the same manner as the leaf enzyme in spite of the difference in reductant supply implicit in its location in a non-photosynthetic tissue.Abbreviations DEAE diethylaminoethyl - EPR electron paramagnetic resonance - NIR nitrite reductase - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

12.
Nitrite reductase purified to homogeneity from vegetable marrow contains 2 atoms Fe/mol. Enzyme-bound iron exchanged extremely slowly with 59-Fe in solution. Acid-acetone extracts of the enzyme have a spectrum which is consistent with the presence of a sirohaem prosthetic group. Inhibition by mersalyl, which partially bleaches the enzyme, is reversible by glutathione only if this is added within a few min of mersalyl. The absorption spectra of the reduced and autoxidised enzyme and of the nitrite, cyanide and CO complexes are described. Amino acid composition data are given. The hydroxylamine reductase activity of the purified enzyme was 0.2% of nitrite reductase activity.  相似文献   

13.
Evidence for an alternative nitrogen fixation system which is expressed under conditions of molybdenum deficiency has been reported in Azotobacter vinelandii (Bishop, P.E., Jarlenski, D.M.L. and Hetherington, D.R., Proc. Natl. Acad. Sci. U.S.A. (1980) 77, 7342–7346). In the present report we describe the existence of activity for a dinitrogenase reductase-like enzyme (alternative reductase) in Mo-deficient cell-free extracts of Nif? mutant strains of A. vinelandii which lack either conventional dinitrogenase reductase (strains UW1 and UW3) or contain a defective enzyme (strain UW91) under conditions of Mo-sufficiency. Nitrogenase activities were determined by the acetylene reduction method in a complementation assay where extracts of strain UW91 served as a source of dinitrogenase and extracts of strains UW1, UW3 or UW91 served as a source of alternative reductase. Strains that lack dinitrogenase reductase activity in the presence of Mo, were shown to have alternative reductase activity under Mo-deficient conditions. Two-dimensional gel electrophoretic analysis showed these extracts to contain a protein of similar mobility as the conventional dinitrogenase reductase. Molybdenum and tungsten repressed the formation of the alternative reductase whereas vanadium mimicked Mo deprivation. In conclusion, the results with the Nif? strains provide evidence for the presence of two reductase activities, one of which is expressed in the presence of Mo (dinitrogenase reductase) and the other in the absence of Mo (alternative reductase).  相似文献   

14.
Tobacco (Nicotiana tabacum var Samsun) was transformed using the bacterial gor gene coding for the enzyme glutathione reductase. Transgenic plants were selected by their kanamycin resistence and expression of the bacterial gor gene. After separation by isoelectric focusing techniques, leaf extracts from transgenic plants having both native and bacterial glutathione reductase activity gave, in addition to the six bands of the native enzyme, two further closely running isoenzymes. These additional bands originating from the expression of the bacterial gor gene were nonchloroplastic. Leaves from transgenic plants had two- to 10-fold higher glutathione reductase activity than non-transgenic controls. The amount of extractable glutathione reductase activity obtained in transgenic plants was dependent on leaf age and the conditions to which leaves were exposed. Both light and exposure to methylviologen increased leaf glutathione reductase activity. Elevated levels of cytosolic glutathione reductase activity in transgenic plants had no effect on the amount or reduction state of the reduced glutathione/oxidized glutathione pool under optimal conditions or oxidative conditions induced by methylviologen. The glutathione pool was unaltered despite the oxidation-dependent loss of CO2 assimilation and oxidation of enzymes involved in photosynthesis. However, the reduction state of the ascorbate pool was greater in transgenic plants relative to nontransgenic controls following illumination of methylviologen-treated leaf discs. Therefore, we conclude that in the natural state glutathione reductase is present in tobacco at levels above those required for maximal operation of the ascorbate-glutathione pathway.  相似文献   

15.
Cell organelles have been isolated from protoplast lysates and total homogenates obtained from root tips of Pisum sativum L. (cv Little Marvel) and Medicago media Pers. (cv Saranac) grown in hydroponics with nitrate nutrient solutions. Density-gradient and differential centrifugation procedures have been used to prepare mitochondria-and plastid-enriched fractions in which glutamine synthetase (GS) activity was estimated. Even when purified protoplasts were gently ruptured, significant breakage of plastids occurred during preparation as shown by the high proportion of nitrite reductase recovered in the soluble fraction. Of the total GS activity recovered, up to 20% was associated with the plastid fraction, depending on the source of plant material and the GS assay utilized; when corrected for recovery of the plastid marker nitrite reductase, it was calculated that 15 to 57% of alfalfa and 14 to 64% of pea root GS was located in the plastids. A true biosynthetic assay in which glutamine production was monitored by high performance liquid chromatography was devised to estimate the physiological significance of the transferase and the semibiosynthetic assays currently used for activity measurements. When compared with the true and semibiosynthetic assays, the transferase assay for GS appeared to underestimate the root plastid enzyme. Root plastid GS was partially purified by ion-exchange chromatography, and results show that the isoenzyme found in root plastids is different from chloroplastic or cytosolic GS.  相似文献   

16.
Silene alba cells grown on nitrate, usually develop NADH-nitrate reductase activity only at the beginning of their growth cycle. Immunodiffusion assays, with a specific nitrate reductase antiserum, revealed the presence of cross-reacting material in cells harvested at any time during their culture. Cells grown on ammonium lacked NADH-nitrate reductase activity but contained cross-reacting material. It is suggested that S. alba cells contain an enzymically inactive, antigenic form of nitrate reductase regardless of the nitrogen source.  相似文献   

17.
Summary The nitrate assimilatory pathway in Neurospora crassa is composed of two enzymes, nitrate reductase and nitrite reductase. Both are 2type homodimers. Enzymebound prosthetic groups mediate the electron transfer reactions which reduce inorganic nitrate to an organically utilizable form, ammonium. One, a molybdenum-containing cofactor, is required by nitrate reductase for both enzyme activity and holoenzyme assembly. Three modes of regulation are imposed on the expression of nitrate assimilation, namely: nitrogen metabolite repression, nitrate induction and autogenous regulation by nitrate reductase. In this study, nitrocellulose blots of sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) resolved proteins from crude extracts of the wild type and specific nitrate-nonutilizing (nit) mutants were examined for material cross-reactive with antibodies against nitrate reductase and nitrite reductase. The polyclonal antibody preparations used were rendered monospecific by reverse affinity chromatography. Growth conditions which alter the regulatory response of the organism were selected such that new insight could be made into the complex nature of the regulation imposed on this pathway. The results indicate that although nitrate reductase and nitrite reductase are coordinately expressed under specific nutritional conditions, the enzymes are differentially responsive to the regulatory signals.  相似文献   

18.
Recent preparations of nitrite reductase do not display the heterodimeric quaternary structure obtained previously (total molecular weight 85,000; subunit molecular weights 24,000 and 61,000), but rather yield only the 61,000 molecular weight subunit, even when buffers containing the protease inhibitor phenylmethylsulfonyl fluoride are used. Nevertheless, such preparations retain the high ratio of ferredoxin-linked to methyl viologen-linked enzyme activity which has been previously taken as a characteristic of only the heterodimeric form. These preparations display a siroheme prosthetic group to protein ratio of 1.1. When nitrite reductase samples are frozen during the purification scheme, even though the ferredoxin-linked specific activity does not significantly decrease, enzyme activity-stained native gel electrophoresis of the subsequently purified protein reveals that gels with several bands of activity can be obtained. Further evidence of protein heterogeneity in these preparations comes from N-terminal amino acid analysis which reveals that even nonfrozen preparations contain two major peptides with valine and cysteine as the N-termini. Formation of complexes of purified nitrite reductase with ferredoxin resulted in siroheme difference electronic spectra which resembled those observed previously for monomeric preparations. However, the siroheme midpoint potential of recent preparations of nitrite reductase (-287 mV) is close to that of the heterodimeric preparations. Ultrafiltration studies of crude extracts of the enzyme indicate that, at least at certain stages of the preparation, higher molecular weight forms of the enzyme may exist. We conclude that the 24,000 molecular weight polypeptide is a contaminant and that the heterodimeric quaternary structure model for spinach nitrite reductase is incorrect. Furthermore, the monomeric preparations we do obtain display both significant protein heterogeneity and facile loss of siroheme upon gel filtration.  相似文献   

19.
The distribution of nitrite reductase (EC 1.7.7.1) and sulfite reductase (EC 1.8.7.1) between mesophyll ceils and bundle sheath cells of maize ( Zea mays L. cv. Seneca 60) leaves was examined. This examination was complicated by the fact that both of these enzymes can reduce both NO-2 and SO2-3 In crude extracts from whole leaves, nitrite reductase activity was 6 to 10 times higher than sulfite reductase activity. Heat treatment (10 min at 55°C) caused a 55% decrease in salfite reductase activity in extracts from bundle sheath cells and mesophyll cells, whereas the loss in nitrite reductase activity was 58 and 82% in bundle sheath cells and mesophyll cell extracts, respectively. This result was explained, together with results from the literature, by the hypothesis that sulfite reductase is present in both bundle sheath cells and mesophyll cells, and that nitrite reductase is restricted to the mesophyll cells. This hypothesis was tested i) by comparing the distribution of nitrite reductase activity and sulfite reductase activity between bundle sheath and mesophyll cells with the presence of the marker enzymes ribulose-l, 5-bisphosphate carboxylase (EC 4.1.1.39) and phosphoe-nolpyruvate carboxylase (EC 4.1.1.32), ii) by examining the effect of cultivation of maize plants in the dark without a nitrogen source on nitrite reductase activity and sulfite reductase activity in the two types of cells, and iii) by studying the action of S2-on the two enzyme activities in extracts from bundle sheath and mesophyll cells. The results from these experiments are consistent with the above hypothesis.  相似文献   

20.
Plastids were separated from extracts of pea (Pisum sativum L.) roots by sucrose-density-gradient centrifugation. The incubation of roots of intact pea seedlings in solutions containing 10 mM KNO3 resulted in increased plastid activity of nitrite reductase and to a lesser extent glutamine synthetase. There were also substantial increases in the activity of glucose-6-phosphate and 6-phosphogluconate dehydrogenases. No other plastid-located enzymes of nitrate assimilation or carbohydrate oxidation showed evidence of increased activity in response to the induction of nitrate assimilation. Studies with [1-14C]-and [6-14C]glucose indicated that there was an increased flow of carbon through the plastid-located pentose-phosphate pathway concurrent with the induction of nitrate assimilation. It is suggested that there is a close interaction through the supply and demand for reductant between the pathway of nitrite assimilation and the pentose-phosphate pathway located in the plastid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号