首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The ploidies and sporulation abilities of six brewer's yeasts were examined. One (YB11-1) out of the six was triploid and sporulating, another (IFO2031) was haploid, and the others (IFO1167, IFO2003, S341 and YB3-7) were diploid and non-sporulating. The five non-sporulating strains did not have the premeiotic DNA synthesis. Their non-sporulating phenotypes were genetically analyzed by examining the sporulation abilities of hybrids between brewer's yeasts and standard genetic strains of Saccharomyces cerevisiae. All non-sporulating brewer's yeasts complemented 32 sporulation-deficient mutations (spoT–spoT23, spo1–spo5, spo7, spo8, spo10, and spo11). Hybrids between brewer's yeasts and haploid or diploid strains homozygous for the mating-type locus had poor or no sporualtion. On the contrary, hybrids between brewer's yeasts and diploid strains heterozygous for the mating-type locus sporulated at a high frequency. These results indicated that the non-sporulating phenotype of brewer's yeasts was caused by a deficiency of the mating-type genes rather than by mutations of sporulation genes. The Southern hybridization probed with the MATa gene showed polymorphisms in mating-type genes of brewer's yeasts.  相似文献   

4.
Conditional Mutants of Meiosis in Yeast   总被引:20,自引:9,他引:11       下载免费PDF全文
Three temperature-sensitive mutants, spo1-1, spo2-1, and spo3-1, were characterized with respect to their behavior in sporulation medium at a restrictive temperature. The time of expression of the functions defective in the mutants was determined by temperature-shift experiments during the sporulation process. In addition, each mutant was examined for the following: (i) its ability to undergo the nuclear divisions of meiosis; (ii) deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein synthesis; (iii) protein turnover; and (iv) colony-forming ability after exposure to sporulation medium. Mutant spo1-1 is defective in a function which confers a temperature-sensitive period which extends over 32% of the sporulation cycle. The temperature-sensitive period of mutant spo2-1 occupies 34% of the cycle, whereas the temperature-sensitive period of mutant spo3-1 extends over 2% of the sporulation cycle. Cytological evidence indicates that all three mutants initiate but do not complete the meiotic nuclear divisions. The DNA content of sporulation cultures of mutants spo1-1 and spo3-1 did not increase to the wild-type level; DNA synthesis in spo2-1 was normal. All three strains exhibit a loss of colony-forming ability during incubation in sporulation medium at the restrictive temperature. RNA and protein synthesis and protein turnover occur in the mutants.  相似文献   

5.
J Engebrecht  S Masse  L Davis  K Rose  T Kessel 《Genetics》1998,148(2):581-598
A screen was designed to identify Saccharomyces cerevisiae mutants that were defective in meiosis yet proficient for meiotic ectopic recombination in the return-to-growth protocol. Seven mutants alleles were isolated; two are important for chromosome synapsis (RED1, MEK1) and five function independently of recombination (SPO14, GSG1, SPOT8/MUM2, 3, 4). Similar to the spoT8-1 mutant, mum2 deletion strains do not undergo premeiotic DNA synthesis, arrest prior to the first meiotic division and fail to sporulate. Surprisingly, although DNA replication does not occur, mum2 mutants are induced for high levels of ectopic recombination. gsg1 diploids are reduced in their ability to complete premeiotic DNA synthesis and the meiotic divisions, and a small percentage of cells produce spores. mum3 mutants sporulate poorly and the spores produced are inviable. Finally, mum4-1 mutants produce inviable spores. The meiotic/sporulation defects of gsg1, mum2, and mum3 are not relieved by spo11 or spo13 mutations, indicating that the mutant defects are not dependent on the initiation of recombination or completion of both meiotic divisions. In contrast, the spore inviability of the mum4-1 mutant is rescued by the spo13 mutation. The mum4-1 spo13 mutant undergoes a single, predominantly equational division, suggesting that MUM4 functions at or prior to the first meiotic division. Although recombination is variably affected in the gsg1 and mum mutants, we hypothesize that these mutants define genes important for aspects of meiosis not directly related to recombination.  相似文献   

6.
SPO14, encoding the major Saccharomyces cerevisiae phospholipase D (PLD), is essential for sporulation and mediates synthesis of the new membrane that encompasses the haploid nuclei that arise through meiotic divisions. PLD catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid (PA) and choline. PA stimulates Arf-GTPase-activating proteins (Arf-GAPs), which are involved in membrane trafficking events and actin cytoskeletal function. To determine if Spo14p-generated PA mediates its biological response through Arf-GAPs, we analyzed the sporulation efficiencies of cells deleted for each of the five known and potential yeast Arf-GAPs. Only gcs1delta mutants display a sporulation defect similar to that of spo14 mutants: cells deleted for GCS1 initiate the sporulation program but are defective in synthesis of the prospore membrane. Endosome-to-vacuole transport is also impaired in gcs1delta cells during sporulation. Furthermore, Arf-GAP catalytic activity, but not the pleckstrin homology domain, is required for both prospore membrane formation and endosome-to-vacuole trafficking. An examination of Gcs1p-green fluorescent protein revealed that it is a soluble protein. Interestingly, cells deleted for GCS1 have reduced levels of Spo14p-generated PA. Taken together, these results indicate that GCS1 is essential for sporulation and suggest that GCS1 positively regulates SPO14.  相似文献   

7.
Fusidic acid-resistant, sporulation-defective mutants were isolated from Bacillus subtilis 168 thy trp. About two-thirds of the fusidic acid-resistant (fusr) mutants were defective in sporulation ability and fell into three classes with respect to sporulation character. The representative mutants FUS426 and FUS429 were characterized in detail. FUS426 [fusr spo (Ts)], a temperature-sensitive sporulation mutant, grew well at 30 and 42 degrees C but did not sporulate at 42 degrees C. FUS429 [fusr spo (Con)], conditional sporulation mutant, grew and sporulated normally in the absence of fusidic acid, but its sporulation and growth rates decreased in the presence of fusidic acid, depending on the concentration of the drug. Although electron microscopic observation showed that both mutants were blocked at stage I of sporulation, the physiological analyses indicate that these mutants belong to the SpoOB class. Both mutants formed a thickened cell wall as compared with that of the parental strain. Genetic and in vitro protein synthesis analyses led to the conclusion that the sporulation-defective character of mutants FUS426 and FUS429 resulted from an alteration in elongation factor G caused by a single lesion in the fus locus. The possible role of elongation factor G in sporulation is discussed.  相似文献   

8.
9.
A Bacillus subtilis prfB45 mutant grew at 42 degrees C, but its sporulation was severely defective at 37 degrees C. Sporulation-specific induction of kinA, spo0A, and spo0H genes was inhibited in the mutant. The effects of temperature up-shift and down-shift on sporulation of the prfB45 mutant was observed at an early stage of sporulation. UGA readthrough frequency at non-permissive temperatures for sporulation was higher in the mutant than in the wild-type strain. Temperature-sensitive sporulation of the prfB45 mutant was suppressed by mutations in rpsL coding for S12 of ribosomes, required for accurate termination of translation. Additionally, spontaneous second-site mutations that suppressed the sporulation phenotype of the prfB45 strain were found in the rpoB gene. These results suggest that accurate termination of translation is required for proper initiation of sporulation.  相似文献   

10.
11.
12.
In Saccharomyces cerevisiae, phospholipase D (PLD), encoded by the SPO14 gene, catalyzes the hydrolysis of phosphatidylcholine, producing choline and phosphatidic acid. SPO14 is essential for cellular differentiation during meiosis and is required for Golgi function when the normal secretory apparatus is perturbed (Sec14-independent secretion). We isolated specific alleles of SPO14 that support Sec14-independent secretion but not sporulation. Identification of these separation-of-function alleles indicates that the role of PLD in these two physiological processes is distinct. Analyses of the mutants reveal that the corresponding proteins are stable, phosphorylated, catalytically active in vitro, and can localize properly within the cell during meiosis. Surprisingly, the separation-of-function mutations map to the conserved catalytic region of the PLD protein. Choline and phosphatidic acid molecular species profiles during Sec14-independent secretion and meiosis reveal that while strains harboring one of these alleles, spo14S-11, hydrolyze phosphatidylcholine in Sec14-independent secretion, they fail to do so during sporulation or normal vegetative growth. These results demonstrate that Spo14 PLD catalytic activity and cellular function can be differentially regulated at the level of phosphatidylcholine hydrolysis.  相似文献   

13.
14.
Bacillus subtilis strains carrying div-341 or sacU mutations, or both, have been characterized to reveal the roles of both genes in the initiation of sporulation, as well as in cell division and exoenzyme secretion. Both mutations were closely linked by transformation and caused the pleiotropic effects on sporulation and sporulation-associated events. Some sacU mutations (sacUh) resulted in hyperproduction of exoenzymes, reduced autolysis, and an ability to sporulate in the presence of excess nutrients. The div-341 mutation, on the other hand, resulted in filamentous growth at a higher temperature (45 degrees C) and showed spo0 properties at an intermediate permissive temperature (37 degrees C) in the usual sporulation medium. However, the div-341 strain sporulated better than wild-type strain at 37 degrees C in the presence of excess nutrients. Exoenzyme production and autolysis were reduced at 37 degrees C in the div-341 strain. A double mutant with sacUh32 and div-341 showed the complex phenotypes. It showed the sacUh32 property of autolysis and exoenyzme secretion. It showed the sacUh32 property of sporulation at 30 degrees C and the div-341 property at 37 degrees C. Slow growth and defective spore outgrowth of the div-341 strain at 37 degrees C were not observed in the double-mutant strain. Based on pleiotropic phenotypes and close linkages of both mutations, we discuss the relationship between the sacU and div-341 genes and their roles in sporulation, exoenzyme secretion, and cell division.  相似文献   

15.
SPO11, a homolog of the subunit A of the archaebacterial topoisomerase VI, is essential for double-strand break (DSB)-induced initiation of meiotic recombination. In contrast with single homologs in animals and yeasts, three homologs are present in Arabidopsis thaliana and other higher plants. Whereas At SPO11-3 is involved in somatic endoreduplication, At SPO11-1 and, as recently shown, At SPO11-2 are essential for the initiation of meiotic recombination. Further defining the role of At SPO11-2, we were able to demonstrate that it is required for proper chromosome segregation, as its loss resulted in aneuploidy in the surviving progeny. The double mutant spo11-1 spo11-2 does not differ phenotypically from the single mutants, indicating that both proteins are required for the same step. Contrary to the observations for the At rad51-1 single mutant, the combination of spo11-2 and rad51-1 did not lead to chromosome fragmentation, indicating that SPO11-2, like SPO11-1, is required for DSB induction. As the meiotic phenotype of both single SPO11 mutants can be reversed by complementation using the full-length genes but not the same constructs mutated in their respective catalytically active Tyr, both proteins seem to participate directly in the DNA breakage reaction. The active involvement of two SPO11 homologs for DSB formation reveals a striking difference between plants and other eukaryotes in meiosis.  相似文献   

16.
We have performed a genetic and biochemical analysis of the SPO12 gene, which regulates meiotic nuclear divisions in budding yeast. When sporulated, spo12 mutants undergo a single meiotic nuclear division most closely resembling meiosis II. We observed that Spo12 protein is localized to the nucleus during both meiotic divisions and that Clb1-Cdc28, Clb3-Cdc28, Clb4-Cdc28, and Clb5-Cdc28 kinase activities during meiosis were not affected by a spo12 mutation. Using two-hybrid analysis, we identified several genes, three of which are meiotically induced, that may code for proteins that interact with Spo12p. We also observed that two genes, BNS1 (Bypasses Need for Spo12p), which has homology to SPO12, and SPO13, whose mutant phenotype is like that of spo12, can partially suppress the meiotic defect of spo12 mutants when overexpressed. We found that Spo12p is also localized to the nucleus in vegetative cells and that its level peaks during G2/M. We observed that a spo12 mutation is synthetically lethal in vegetative cells with a mutation in HCT1, a gene necessary for cells to exit mitosis, suggesting that Spo12p may have a role in exit from mitosis.  相似文献   

17.
18.
19.
I Smith  E Dubnau  M Predich  U Bai  R Rudner 《Biochimie》1992,74(7-8):669-678
The early spo genes are subject to a number of different control mechanisms. We found that at least one histidine kinase, SpoIIJ, is important for the expression of early spo genes but that two others, ComP and DegS, also affect sporulation, especially when SpoIIJ is absent. This indicates the existence of a signal transduction network which may gather information from several sources to feed into the sporulation pathway. Early spo gene expression is inhibited by overproduction of two response regulators, SpoOF and ComA. This effect is eliminated by the elevated presence of their cognate histidine kinases, SpoIIJ and ComP, respectively. This suggests that the unphosphorylated response regulators cause the inhibition of sporulation.  相似文献   

20.
We isolated novel temperature-sensitive mutants of spo0H, spo0H1 and spo0H5, having E61K and G30E amino-acid substitutions within the sigmaH protein, respectively, and located in the highly conserved region, "2", among prokaryotic sigma factors that participates in binding to core enzyme of RNA polymerase. These mutants showed a sporulation-deficient phenotype at 43 degrees C. Moreover, we successfully isolated suppressor mutants that were spontaneously generated from the spo0H mutants. Our genetic analysis of these suppressor mutations revealed that the suppressor mutations are within the rpoB gene coding for the beta subunit of RNA polymerase. The mutations caused single amino-acid substitutions, E857A and P1055S, in rpoB18 and rpoB532 mutants that were generated from spo0H1 and spo0H5, respectively. Whereas the sigmaH-dependent expression of a spo0A-bgaB fusion was greatly reduced in both spo0H mutants, their expression was partially restored in the suppressor mutants at 43 degrees C. Western blot analysis showed that the level of sigmaH protein in the wild type increased between T0 and T2 and decreased after T3, while the level of sigmaH protein in spo0H mutants was greatly reduced throughout growth, indicating that the mutant sigmaH proteins were rapidly degraded by some unknown proteolytic enzyme(s). The analysis of the half-life of sigmaH protein showed that the short life of sigmaH in spo0H mutants is prolonged in the suppressor mutants. These findings suggest that, at least to some extent, the process of E-sigmaH formation may be involved in stabilization of sigmaH at the onset of sporulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号