首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp(1067) and Lys(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi-specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.  相似文献   

2.
Sun JZ  Julin DA  Hu JS 《Biochemistry》2006,45(1):131-140
The 30 kDa C-terminal domain of the RecB protein (RecB30) has nuclease activity and is believed to be responsible for the nucleolytic activities of the RecBCD enzyme. However, the RecB30 protein, studied as a histidine-tagged fusion protein, appeared to have very low nucleolytic activity on single-stranded (ss) DNA [Zhang, X. J., and Julin, D. A. (1999) Nucleic Acids Res. 27, 4200-4207], which raised the question of whether RecB30 was indeed the sole nuclease domain of RecBCD. Here, we have purified the RecB30 protein without a fusion tag. We report that RecB30 efficiently degrades both linear and circular single- and double-stranded (ds) DNA. The endonucleolytic cleavage of circular dsDNA is consistent with the fact that RecB30 has amino acid sequence similarity to some restriction endonucleases. However, endonuclease activity on dsDNA had never been seen before for RecBCD or any fragments of RecBCD. Kinetic analysis indicates that RecB30 is at least as active as RecBCD on the ssDNA substrates. These results provide direct evidence that RecB30 is the universal nuclease domain of RecBCD. The fact that the RecB30 nuclease domain alone has high intrinsic nuclease activity and can cleave dsDNA endonucleolytically suggests that the nuclease activity of RecB30 is modulated when it is part of the RecBCD holoenzyme. A new model has been proposed to explain the regulation of the RecB30 nuclease in RecBCD.  相似文献   

3.
The RecB and RecD subunits of the RecBCD enzyme of Escherichia coli contain amino acid sequences similar to a consensus mononucleotide binding motif found in a large number of other enzymes. We have constructed by site-directed mutagenesis a lysine-to-glutamine mutation in this sequence in the RecB protein. The mutant enzyme (RecB-K29Q-CD) has essentially no nuclease or ATP hydrolysis activity on double-stranded DNA, showing the importance of RecB for unwinding double-stranded DNA. However, ATP hydrolysis stimulated by single-stranded DNA is reduced by only about 5-8-fold compared to the wild-type, nuclease activity on single-stranded DNA is reduced by less than 2-fold, and the nuclease activity of the RecB-K29Q-CD enzyme requires ATP. The effects of the RecB mutation suggest that the RecD protein hydrolyzes ATP and can stimulate the RecBCD enzyme nuclease activity on single-stranded DNA.  相似文献   

4.
The RecB subunit of the Escherichia coli RecBCD enzyme has been shown in previous work to have two domains: an N-terminal 100 kDa domain with ATP-dependent helicase activity, and a C-terminal 30 kDa domain. The 30 kDa domain had nuclease activity when linked to a heterologous DNA binding protein, but by itself it appeared unable to bind DNA and lacked detectable nuclease activity. We have expressed and isolated this 30 kDa domain, called RecB(N), and show that it does have nuclease activity detectable at high protein concentration in the presence of polyethylene glycol, added as a molecular crowding agent. The activity is undetectable in a mutant RecB(N)protein in which an aspartate residue has been changed to alanine. Structural analysis of the wild-type and mutant RecB(N)proteins by second derivative absorbance and circular dichroism spectroscopy indicates that both are folded proteins with very similar secondary and tertiary structures. The results show that the Asp-->Ala mutation has not caused a significant structural change in the isolated domain and they support the conclusion that the C-terminal domain of RecB has the sole nuclease active site of RecBCD.  相似文献   

5.
E. coli RecBCD, a helicase/nuclease involved in double stranded (ds) DNA break repair, binds to a dsDNA end and melts out several DNA base pairs (bp) using only its binding free energy. We examined RecBCD-DNA initiation complexes using thermodynamic and structural approaches. Measurements of enthalpy changes for RecBCD binding to DNA ends possessing pre-melted ssDNA tails of increasing length suggest that RecBCD interacts with ssDNA as long as 17–18 nucleotides and can melt at least 10–11 bp upon binding a blunt DNA end. Cryo-EM structures of RecBCD alone and in complex with a blunt-ended dsDNA show significant conformational heterogeneities associated with the RecB nuclease domain (RecBNuc) and the RecD subunit. In the absence of DNA, 56% of RecBCD molecules show no density for the RecB nuclease domain, RecBNuc, and all RecBCD molecules show only partial density for RecD. DNA binding reduces these conformational heterogeneities, with 63% of the molecules showing density for both RecD and RecBNuc. This suggests that the RecBNuc domain is dynamic and influenced by DNA binding. The major RecBCD-DNA structural class in which RecBNuc is docked onto RecC shows melting of at least 11 bp from a blunt DNA end, much larger than previously observed. A second structural class in which RecBNuc is not docked shows only four bp melted suggesting that RecBCD complexes transition between states with different extents of DNA melting and that the extent of melting regulates initiation of helicase activity.  相似文献   

6.
The equilibrium binding of Escherichia coli RecBC and RecBCD helicases to duplex DNA ends containing varying lengths of polyethylene glycol (PEG) spacers within pre-formed 3'-single-stranded (ss) DNA ((dT)n) tails was studied. These studies were designed to test a previous proposal that the 3'-(dT)n tail can be looped out upon binding RecBC and RecBCD for 3'-ssDNA tails with n>or=6 nucleotides. Equilibrium binding of protein to unlabeled DNA substrates with ends containing PEG-substituted 3'-ssDNA tails was examined by competition with a Cy3-labeled reference DNA which undergoes a Cy3 fluorescence enhancement upon protein binding. We find that the binding affinities of both RecBC and RecBCD for a DNA end are unaffected upon substituting PEG for the ssDNA between the sixth and the final two nucleotides of the 3'-(dT)n tail. However, placing PEG at the end of the 3'-(dT)n tail increases the binding affinities to their maximum values (i.e. the same as binding constants for RecBC or RecBCD to a DNA end with only a 3'-(dT)6 tail). Equilibrium binding studies of a RecBC mutant containing a nuclease domain deletion, RecB(Deltanuc)C, suggest that looping of the 3'-tail (when n>or=6 nucleotides) occurs even in the absence of the RecB nuclease domain, although the nuclease domain stabilizes such loop formation. Computer modeling of the RecBCD-DNA complexes suggests that the loop in the 3'-ssDNA tail may form at the RecB/RecC interface. Based on these results we suggest a model for how a loop in the 3'-ssDNA tail might form upon encounter of a "Chi" recognition sequence during unwinding of DNA by the RecBCD helicase.  相似文献   

7.
The RecBCD-K177Q enzyme has a lysine-to-glutamine mutation in the putative ATP-binding sequence of the RecD protein (Korangy, F., and Julin, D.A. (1992) J. Biol. Chem. 267, 1727-1732). We have compared the enzymatic properties of the RecBCD-K177Q enzyme with those of the wild-type RecBCD enzyme from Escherichia coli. The purified RecBCD-K177Q enzyme has ATP-dependent nuclease activity on double-stranded or denatured DNA which is reduced (4-14-fold less) compared with the wild type. The kcat and Km(ATP) for ATP hydrolysis stimulated by double-stranded DNA are both reduced in RecBCD-K177Q, so that kcat/Km(ATP) is relatively unaffected. The mutant enzyme is impaired in its ability to unwind DNA in an assay where single-stranded DNA is trapped by the single-stranded DNA binding protein and subsequently degraded by S1 nuclease. The mutant enzyme also produces fewer acid-soluble DNA nucleotides per ATP hydrolyzed than does the wild type, at low ATP concentrations (less than 20 microM).  相似文献   

8.
Homologous recombination and double-stranded DNA break repair in Escherichia coli are initiated by the multifunctional RecBCD enzyme. After binding to a double-stranded DNA end, the RecBCD enzyme unwinds and degrades the DNA processively. This processing is regulated by the recombination hot spot, Chi (chi: 5'-GCTGGTGG-3'), which induces a switch in the polarity of DNA degradation and activates RecBCD enzyme to coordinate the loading of the DNA strand exchange protein, RecA, onto the single-stranded DNA products of unwinding. Recently, a single mutation in RecB, Asp-1080 --> Ala, was shown to create an enzyme (RecB(D1080A)CD) that is a processive helicase but not a nuclease. Here we show that the RecB(D1080A)CD enzyme is also unable to coordinate the loading of the RecA protein, regardless of whether chi sites are present in the DNA. However, the RecB(D1080A)CD enzyme does respond to chi sites by inactivating in a chi-dependent manner. These data define a locus of the RecBCD enzyme that is essential not only for nuclease function but also for the coordination of RecA protein loading.  相似文献   

9.
The RecB subunit of the Escherichia coli RecBCD enzyme has previously been reported to possess DNA-dependent ATPase activity (Hickson, I. D., Robson, C. N., Atkinson, K. E., Hutton, L., and Emmerson, P. T. (1985) J. Biol. Chem. 260, 1224-1229). Here we demonstrate that a specific interaction between RecB protein and ATP can also be shown by photoaffinity labeling with the ATP analogue 8-azido-ATP. Furthermore, the capacity of the RecB protein to support ATP hydrolysis varies with the structure and length of the DNA cofactor. Single-stranded linear and circular DNA are markedly better in promoting ATP hydrolysis than duplex DNA. The purified RecB protein can function as a DNA helicase, displacing oligonucleotides annealed to viral M13 DNA in an ATP-dependent and orientation-specific manner.  相似文献   

10.
Bacteriophage P22 Abc2 protein binds to the RecBCD enzyme from Escherichia coli to promote phage growth and recombination. Overproduction of the RecC subunit in vivo, but not RecB or RecD, interfered with Abc2-induced UV sensitization, revealing that RecC is the target for Abc2 in vivo. UV-induced ATP crosslinking experiments revealed that Abc2 protein does not interfere with the binding of ATP to either the RecB or RecD subunits in the absence of DNA, though it partially inhibits RecBCD ATPase activity. Productive growth of phage P22 in wild-type Salmonella typhimurium correlates with the presence of Abc2, but is independent of the absolute level of ATP-dependent nuclease activity, suggesting a qualitative change in the nature of Abc2-modified RecBCD nuclease activity relative to the native enzyme. In lambda phage crosses, Abc2-modified RecBCD could substitute for lambda exonuclease in Red-promoted recombination; lambda Gam could not. In exonuclease assays designed to examine the polarity of digestion, Abc2 protein qualitatively changes the nature of RecBCD double-stranded DNA exonuclease by increasing the rate of digestion of the 5' strand. In this respect, Abc2-modified RecBCD resembles a RecBCD molecule that has encountered the recombination hotspot Chi. However, unlike Chi-modified RecBCD, Abc2-modified RecBCD still possesses 3' exonuclease activity. These results are discussed in terms of a model in which Abc2 converts the RecBCD exonuclease for use in the P22 phage recombination pathway. This mechanism of P22-mediated recombination distinguishes it from phage lambda recombination, in which the phage recombination system (Red) and its anti-RecBCD function (Gam) work independently.  相似文献   

11.
Faithful repair of DNA double-strand breaks by homologous recombination is crucial to maintain functional genomes. The major Escherichia coli pathway of DNA break repair requires RecBCD enzyme, a complex protein machine with multiple activities. Upon encountering a Chi recombination hotspot (5′ GCTGGTGG 3′) during DNA unwinding, RecBCD's unwinding, nuclease, and RecA-loading activities change dramatically, but the physical basis for these changes is unknown. Here, we identify, during RecBCD's DNA unwinding, two Chi-stimulated conformational changes involving RecC. One produced a marked, long-lasting, Chi-dependent increase in protease sensitivity of a small patch, near the Chi recognition domain, on the solvent-exposed RecC surface. The other change was identified by crosslinking of an artificial amino acid inserted in this RecC patch to RecB. Small-angle X-ray scattering analysis confirmed a major conformational change upon binding of DNA to the enzyme and is consistent with these two changes. We propose that, upon DNA binding, the RecB nuclease domain swings from one side of RecC to the other; when RecBCD encounters Chi, the nuclease domain returns to its initial position determined by crystallography, where it nicks DNA exiting from RecC and loads RecA onto the newly generated 3′-ended single-stranded DNA during continued unwinding; a crevice between RecB and RecC increasingly narrows during these steps. This model provides a physical basis for the intramolecular “signal transduction” from Chi to RecC to RecD to RecB inferred previously from genetic and enzymatic analyses, and it accounts for the enzymatic changes that accompany Chi's stimulation of recombination.  相似文献   

12.
RecBCD is a processive, DNA-based motor enzyme with both helicase and nuclease activities. We used high-resolution optical trapping to study individual RecBCD molecules moving against applied forces up to 8 pN. Fine-scale motion was smooth down to a detection limit of 2 nm, implying a unitary step size below six basepairs (bp). Episodes of constant-velocity motion over hundreds to thousands of basepairs were punctuated by abrupt switches to a different speed or by spontaneous pauses of mean length 3 s. RecBCD occasionally reversed direction, sliding backward along DNA. Backsliding could be halted by reducing the force, after which forward motion sometimes resumed, often after a delay. Elasticity measurements showed that the DNA substrate was partially denatured during backsliding events, but reannealed concomitant with the resumption of forward movement. Our observations show that RecBCD-DNA complexes can exist in multiple, functionally distinct states that persist for many catalytic turnovers: such states may help tune enzyme activity for various biological functions.  相似文献   

13.
To investigate the role that the individual subunits play in the ATP-dependent helicase activity of the RecBCD protein we have investigated the ability of the RecB, RecC and RecD proteins to displace various 20-mer oligonucleotides annealed to either end or to the centre of an oligonucleotide 60 bases long. The results show that the only subunit which can displace the 20-mers in the absence of the other subunits is the RecB protein. Moreover, the 20-mer is displaced only if it is annealed to the 60-mer at the 5′ end or the middle, suggesting that the RecB protein translocates along the 60-mer in the 3′ to 5′ direction, displacing annealed 20-mers as it proceeds. We have shown that reconstituted RecBC and RecBCD complexes displace the 20-mers but, unlike RecB, they do not require a 3′-ended single-stranded region for helicase action, but can displace the 20-mers from either end of the 60-mer. The level of helicase activity of the RecBC complex is considerably greater than that of RecB alone, and the activity of the RecBCD complex appears to be greater still. This hierarchy of activity is also shown by DNA binding studies, but is not reflected in the ATPase activities of the enzymes. We have also shown that the ability of trypsin to cleave various sites on the RecB molecule is modified by the presence of ATP or ATP-γ-S, suggesting that conformational changes may be induced in RecB upon ATP binding. We discuss a model for the ATP-driven, unidirectional motion of the RecB translocase along single-stranded DNA. In this model, the RecB molecule binds to single-stranded DNA and then translocates along it, one base at a time, in the 3′ to 5′ direction, by a `ratchet' mechanism in which repeated stretching and contraction of the protein is coupled to ATP hydrolysis. The RecC protein in the RecBC complex is proposed to act as a `sliding clamp' which increases processivity by preventing dissociation.  相似文献   

14.
The RecB subunit of the Escherichia coli RecBCD enzyme has both helicase and nuclease activities. The helicase function was localized to an N-terminal domain, whereas the nuclease activity was found in a C-terminal domain. Recent analysis has uncovered a group of proteins that have weak amino acid sequence similarity to the RecB nuclease domain and that are proposed to constitute a family of related proteins (Aravind, L., Walker, D. R., and Koonin, E. V. (1999) Nucleic Acids Res. 27, 1223-1242). One is the E. coli RecE protein (exonuclease VIII), an ATP-independent exonuclease that degrades the 5'-terminated strand of double-stranded DNA. We have made mutations in several residues of RecE that align with the critical residues of RecB, and we find that the mutations reduce or abolish the nuclease activity of RecE but do not affect the enzyme binding to linear double-stranded DNA. Proteolysis experiments with subtilisin show that a stable 34-kilodalton C-terminal domain that contains these critical residues has nuclease activity, whereas no stable proteolytic fragments accumulate from the N-terminal portion of RecE. These results show that RecE has a nuclease domain and active site that are similar to RecB, despite the very weak sequence similarity between the two proteins. These similarities support the hypothesis that the nuclease domains of the two proteins are evolutionarily related.  相似文献   

15.
The E. coli RecBCD enzyme facilitates the loading of RecA onto single-stranded DNA produced by the combined helicase/nuclease activity of RecBCD. The nuclease domain of RecB protein, RecBnuc, has been previously shown to bind RecA. Surprisingly, RecBnuc also binds to phage and eukaryotic homologs of RecA, leading to the suggestion that RecBnuc interacts with the polymerization motif that is present in all three proteins. This mode of interaction could only be with monomeric RecA, as this motif would be buried in filaments. We show that RecBnuc binds extensively to the outside of RecA-DNA filaments. Three-dimensional reconstructions suggest that RecBnuc binds to the ATP-binding core of RecA, with a displacement of the C-terminal domain of RecA. Solution experiments confirm that the interaction of RecBnuc is only with the RecA core. Since the RecA C-terminal domain has been shown to be regulatory, the interaction observed may be part of the loading mechanism where RecB displaces the RecA C-terminal domain and activates a RecA monomer for polymerization.  相似文献   

16.
    
To investigate the role that the individual subunits play in the ATP-dependent helicase activity of the RecBCD protein we have investigated the ability of the RecB, RecC and RecD proteins to displace various 20-mer oligonucleotides annealed to either end or to the centre of an oligonucleotide 60 bases long. The results show that the only subunit which can displace the 20-mers in the absence of the other subunits is the RecB protein. Moreover, the 20-mer is displaced only if it is annealed to the 60-mer at the 5′ end or the middle, suggesting that the RecB protein translocates along the 60-mer in the 3′ to 5′ direction, displacing annealed 20-mers as it proceeds. We have shown that reconstituted RecBC and RecBCD complexes displace the 20-mers but, unlike RecB, they do not require a 3′-ended single-stranded region for helicase action, but can displace the 20-mers from either end of the 60-mer. The level of helicase activity of the RecBC complex is considerably greater than that of RecB alone, and the activity of the RecBCD complex appears to be greater still. This hierarchy of activity is also shown by DNA binding studies, but is not reflected in the ATPase activities of the enzymes. We have also shown that the ability of trypsin to cleave various sites on the RecB molecule is modified by the presence of ATP or ATP-γ-S, suggesting that conformational changes may be induced in RecB upon ATP binding. We discuss a model for the ATP-driven, unidirectional motion of the RecB translocase along single-stranded DNA. In this model, the RecB molecule binds to single-stranded DNA and then translocates along it, one base at a time, in the 3′ to 5′ direction, by a `ratchet' mechanism in which repeated stretching and contraction of the protein is coupled to ATP hydrolysis. The RecC protein in the RecBC complex is proposed to act as a `sliding clamp' which increases processivity by preventing dissociation. Received: 10 September 1996 / Accepted: 18 November 1996  相似文献   

17.
Although the RecB(2109)CD enzyme retains most of the biochemical functions associated with the wild-type RecBCD enzyme, it is completely defective for genetic recombination. Here, we demonstrate that the mutant enzyme exhibits an aberrant double-stranded DNA exonuclease activity, intrinsically producing a 3'-terminal single-stranded DNA overhang that is an ideal substrate for RecA protein-promoted strand invasion. Thus, the mutant enzyme constitutively processes double-stranded DNA in the same manner as the chi-modified wild-type RecBCD enzyme. However, we further show that the RecB(2109)CD enzyme is unable to coordinate the loading of RecA protein onto the single-stranded DNA produced, and we conclude that this inability results in the recombination-defective phenotype of the recB2109 allele. Our findings argue that the facilitated loading of RecA protein by the chi-activated RecBCD enzyme is essential for RecBCD-mediated homologous recombination in vivo.  相似文献   

18.
We recently demonstrated that the RecBCD enzyme is a bipolar DNA helicase that employs two single-stranded DNA motors of opposite polarity to drive translocation and unwinding of duplex DNA. We hypothesized that this organization may explain the exceptionally high rate and processivity of DNA unwinding catalyzed by the RecBCD enzyme. Using a stopped-flow dye displacement assay for unwinding activity, we test this idea by analyzing mutant RecBCD enzymes in which either of the two helicase motors is inactivated by mutagenesis. Like the wild-type RecBCD enzyme, the two mutant proteins maintain the ability to bind tightly to blunt duplex DNA ends in the absence of ATP. However, the rate of forward translocation for the RecB motor-defective enzyme is only approximately 30% of the wild-type rate, whereas for the RecD motor-defective enzyme, it is approximately 50%. More significantly, the processivity of translocation is substantially reduced by approximately 25- and 6-fold for each mutant enzyme, respectively. Despite retaining the capacity to bind blunt dsDNA, the RecB-mutant enzyme has lost the ability to unwind DNA unless the substrate contains a short 5'-terminated single-stranded DNA overhang. The consequences of this observation for the architecture of the single-stranded DNA motors in the initiation complex are discussed.  相似文献   

19.
Genetic Dissection of the Biochemical Activities of Recbcd Enzyme   总被引:11,自引:2,他引:9       下载免费PDF全文
RecBCD enzyme of Escherichia coli is required for the major pathway of homologous recombination following conjugation. The enzyme has an ATP-dependent DNA unwinding activity, ATP-dependent single-stranded (ss) and double-stranded (ds) DNA exonuclease activities, and an activity that makes a ss DNA endonucleolytic cut near Chi sites. We have isolated and characterized ten mutations that reduced recombination proficiency and inactivated some, but not all, activities of RecBCD enzyme. One class of mutants had weak ds DNA exonuclease activity and lacked Chi-dependent DNA cleavage activity, a second class lacked only Chi-dependent DNA cleavage activity, and a third class retained all activities tested. The properties of these mutants indicate that the DNA unwinding and ss DNA exonuclease activities of the RecBCD enzyme are not sufficient for recombination. Furthermore, they suggest that the Chi-dependent DNA cleavage activity or another, as yet unidentified activity or both are required for recombination. The roles of the RecBCD enzymatic activities in recombination and exclusion of foreign DNA are discussed in light of the properties of these and other recBCD mutations.  相似文献   

20.

Background

The recD mutants of the Antarctic Pseudomonas syringae Lz4W are sensitive to DNA-damaging agents and fail to grow at 4°C. Generally, RecD associates with two other proteins (RecB and RecC) to produce RecBCD enzyme, which is involved in homologous recombination and DNA repair in many bacteria, including Escherichia coli. However, RecD is not essential for DNA repair, nor does its deletion cause any growth defects in E. coli. Hence, the assessment of the P. syringae RecBCD pathway was imperative.

Methodology/Principal Findings

Mutational analysis and genetic complementation studies were used to establish that the individual null-mutations of all three genes, recC, recB, and recD, or the deletion of whole recCBD operon of P. syringae, lead to growth inhibition at low temperature, and sensitivity to UV and mitomycin C. Viability of the mutant cells dropped drastically at 4°C, and the mutants accumulated linear chromosomal DNA and shorter DNA fragments in higher amounts compared to 22°C. Additional genetic data using the mutant RecBCD enzymes that were inactivated either in the ATPase active site of RecB (RecBK29Q) or RecD (RecDK229Q), or in the nuclease center of RecB (RecBD1118A and RecBΔnuc) suggested that, while the nuclease activity of RecB is not so critical in vivo, the ATP-dependent functions of both RecB and RecD are essential. Surprisingly, E. coli recBCD or recBC alone on plasmid could complement the defects of the ΔrecCBD strain of P. syringae.

Conclusions/Significance

All three subunits of the RecBCDPs enzyme are essential for DNA repair and growth of P. syringae at low temperatures (4°C). The RecD requirement is only a function of the RecBCD complex in the bacterium. The RecBCD pathway protects the Antarctic bacterium from cold-induced DNA damages, and is critically dependent on the helicase activities of both RecB and RecD subunits, but not on the nuclease of RecBCDPs enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号