首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
大量证据表明microRNA(miRNA)通过靶向调控靶基因的表达从而在肿瘤侵袭与转移中发挥重要作用。然而关于microRNA-216b-5p (miR-216b-5p )通过靶向嗜乳脂蛋白第3亚家族膜蛋白A2(butyrophilin subfamily 3 member A2,BTN3A2)促进胶质瘤侵袭与转移的机制尚不明确。本研究通过GSE15824与GSE4290差异表达分析筛选出同时在2个芯片中表达上调的BTN3A2(P<0.05)。生存曲线结果显示,高表达BTN3A2病人总生存期明显下降(P<0.001)。表达量分析结果显示,BTN3A2表达随WHO分级升高而升高(P<0.05),同时1p/19q未联合缺失与IDH突变型病人BTN3A2表达升高(P<0.001)。基因集富集分析(gene set enrichment analysis,GSEA)结果显示,BTN3A2与众多癌症相关通路有关(P<0.05);Western印迹结果显示,BTN3A2在7例胶质瘤组织和胶质瘤细胞系U87、U251和LN-229中表达上调,过表达miR-216b-5p (miR-216b-5p mimics)后BTN3A2蛋白表达水平降低;Transwell结果显示,转染BTN3A2干扰质粒(si-BTN3A2)和miR-216b-5p mimics后可以抑制LN 229细胞体外迁移与侵袭能力(P<0.05);在线预测网站证实,miR-216b-5p 为BTN3A2潜在靶基因;生存曲线结果显示,与低表达miR-216b-5p 病人相比,高表达病人生存率明显上调(P=0.025);荧光定量RT PCR结果显示,miR-216b-5p 在胶质瘤U87、U251和LN-229细胞中表达下降(P<0.05);双荧光素酶结果显示,BTN3A2存在与miR-216b-5p 的结合靶点(P<005);综上所述,BTN3A2可能通过结合miR-216b-5p 促进胶质瘤细胞LN 229的迁移以及侵袭。  相似文献   

2.
3.

Objectives

To study the expression pattern and prognostic significance of SAMSN1 in glioma.

Methods

Affymetrix and Arrystar gene microarray data in the setting of glioma was analyzed to preliminarily study the expression pattern of SAMSN1 in glioma tissues, and Hieratical clustering of gene microarray data was performed to filter out genes that have prognostic value in malignant glioma. Survival analysis by Kaplan-Meier estimates stratified by SAMSN1 expression was then made based on the data of more than 500 GBM cases provided by The Cancer Genome Atlas (TCGA) project. At last, we detected the expression of SAMSN1 in large numbers of glioma and normal brain tissue samples using Tissue Microarray (TMA). Survival analysis by Kaplan-Meier estimates in each grade of glioma was stratified by SAMSN1 expression. Multivariate survival analysis was made by Cox proportional hazards regression models in corresponding groups of glioma.

Results

With the expression data of SAMSN1 and 68 other genes, high-grade glioma could be classified into two groups with clearly different prognoses. Gene and large sample tissue microarrays showed high expression of SAMSN1 in glioma particularly in GBM. Survival analysis based on the TCGA GBM data matrix and TMA multi-grade glioma dataset found that SAMSN1 expression was closely related to the prognosis of GBM, either PFS or OS (P<0.05). Multivariate survival analysis with Cox proportional hazards regression models confirmed that high expression of SAMSN1 was a strong risk factor for PFS and OS of GBM patients.

Conclusion

SAMSN1 is over-expressed in glioma as compared with that found in normal brains, especially in GBM. High expression of SAMSN1 is a significant risk factor for the progression free and overall survival of GBM.  相似文献   

4.
It was reported that γ-irradiation had a controversial therapeutic effect on glioma cells. We aimed to investigate the cytotoxic effect on the glioma cells induced by γ-irradiation and explore the treatment to rescue the phenotype alteration of remaining cells. We used transwell assay to detect the glioma cell invasion and migration capacity. Cell proliferation and apoptosis were tested by the CCK-8 assay and flow cytometry respectively. Western Blot was used to detect the activity of Hedgehog signaling pathway and Epithelial-to-Mesenchymal Transition (EMT) status. γ-irradiation showed cytotoxic effect on LN229 cells in vitro, whereas this contribution was limited in U251 cells. However, it could significantly stimulated EMT process in both LN229 and U251. Curcumin (CCM) could rescue EMT process induced by γ-irradiation via the suppression of Gli1 and the upregulation of Sufu. The location and expression of EMT markers were also verified by Immunofluorescence. Immunohistochemistry assay was used on intracranial glioma tissues of nude mice. The capacities of cell migration and invasion were suppressed with combined therapy. This research showed Curcumin could rescue the EMT process induced by γ-irradiation via inhibiting the Hedgehog signaling pathway and potentiate the cell cytotoxic effect in vivo and in vitro.  相似文献   

5.

Background

Glioma, including anaplastic astrocytoma and glioblastoma multiforme (GBM) are among the most commonly diagnosed malignant adult brain tumors. GBM is a highly invasive and angiogenic tumor, resulting in a 12 to 15 months median survival. The treatment of GBM is multimodal and includes surgical resection, followed by adjuvant radio-and chemotherapy. We have previously reported that short-term starvation (STS) enhances the therapeutic index of chemo-treatments by differentially protecting normal cells against and/or sensitizing tumor cells to chemotoxicity.

Methodology and Principal Findings

To test the effect of starvation on glioma cells in vitro, we treated primary mouse glia, murine GL26, rat C6 and human U251, LN229 and A172 glioma cells with Temozolomide in ad lib and STS mimicking conditions. In vivo, mice with subcutaneous or intracranial models of GL26 glioma were starved for 48 hours prior to radio- or chemotherapy and the effects on tumor progression and survival were measured. Starvation-mimicking conditions sensitized murine, rat and human glioma cells, but not primary mixed glia, to chemotherapy. In vivo, starvation for 48 hours, which causes a significant reduction in blood glucose and circulating insulin-like growth factor 1 (IGF-1) levels, sensitized both subcutaneous and intracranial glioma models to radio-and chemotherapy.

Conclusion

Starvation-induced cancer sensitization to radio- or chemotherapy leads to extended survival in the in vivo glioma models tested. These results indicate that fasting and fasting-mimicking interventions could enhance the efficacy of existing cancer treatments against aggressive glioma in patients.  相似文献   

6.
ABCE1是ATP结合盒蛋白亚家族成员之一,在病毒感染,细胞增殖,抗凋亡,翻译起始和核糖体生物发生等过程中有重要的作用。为了探讨ABCE1对神经胶质瘤细胞U251增殖、迁移和凋亡的作用,本研究通过实时荧光定量PCR和免疫印迹实验检测ABCE1在神经胶质瘤细胞和正常胶质细胞中的mRNA和蛋白质表达水平,结果发现ABCE1在神经胶质瘤细胞U251中的表达高于在正常胶质细胞中的表达。利用siRNA靶向沉默ABCE1后,神经胶质瘤细胞U251中ABCE1 mRNA和蛋白的表达水平均显著减少,细胞的凋亡率显著提高,细胞增殖和迁移明显受到抑制,而且细胞对化疗药物替莫唑胺的敏感性增强。此外,沉默ABCE1后,Bcl-2的mRNA和蛋白质表达水平显著下调,而Bax的mRNA和蛋白质表达水平显著上调。以上研究结果表明,ABCE1与神经胶质瘤细胞的增殖和迁移密切相关,通过siRNA靶向沉默ABCE1基因可显著降低U251细胞的增殖和迁移能力。  相似文献   

7.
Glioblastoma multiforme (GBM) represents the most common and malignant brain tumor. GBM tissues exhibit elevated expression of the transforming growth factor-beta1 (TGF-β1) and the adhesion molecule L1CAM. This study investigated the mechanism of L1CAM regulation in GBM cells and its role in the mediation of chemoresistance. L1CAM expression levels varied in GBM cells being highest in A172 cells and low in T98G cells. Inhibition of TGF-β1 signaling in A172 cells reduced L1CAM expression and vice versa stimulation with exogenous TGF-β1 led to upregulation of L1CAM in T98G cells. Additionally, TGF-β1 and L1CAM expression increased during differentiation of glioma stem-like cells. L1CAM expressing GBM cells and differentiated glioma stem-like cells showed a reduced apoptotic response after treatment with the chemotherapeutic drug temozolomide. Accordingly, siRNA-mediated knock-down of L1CAM in A172 cells and differentiated glioma stem-like cells increased chemosensitivity, whereas overexpression of L1CAM in T98G cells and glioma spheroids diminished the apoptotic response. Elevated L1CAM expression caused a diminished expression of caspase-8 in GBM and differentiated glioma stem-like cells. These data show that TGF-β1 dependent upregulation of L1CAM expression in GBM cells leads to the downregulation of caspase-8 and apoptosis resistance pointing to L1CAM as potential target for improved therapy of GBM patients.  相似文献   

8.
Overcoming temozolomide (TMZ) resistance in glioma cancer cells remains a major challenge to the effective treatment of the disease. Increasing TMZ efficacy for patients with glioblastoma (GBM) is urgently needed because TMZ treatment is the standard chemotherapy protocol for adult patients with glioblastoma. O6-methylguanine-DNA-methyltransferase (MGMT) overexpression is associated with TMZ resistance, and low MGMT is a positive response marker for TMZ therapy. Here, we used 3 glioma cell lines (SF767, U373, and LN229), which had different levels of TMZ sensitivity. We found TMZ sensitivity is positively correlated with MGMT expression and multidrug-resistance protein ABC subfamily G member 2 (ABCG2) in these cells. CK2-STAT3 signaling and Hippo-YAP signaling are reported to regulate MGMT expression and ABCG2 expression, respectively. We combined CK2 inhibitor CX-4945 and YAP inhibitor verteporfin with TMZ treatment. We found that CX-4945 but not verteporfin can sensitize TMZ-resistant cells SF767 to TMZ and that CX-4945 and TMZ combinational treatment was effective for glioma treatment in mouse models compared with TMZ alone.ImplicationsA combination of CK2 inhibitor with TMZ may improve the therapeutic efficiency of TMZ toward GBM with acquired resistance.  相似文献   

9.
10.
Long noncoding RNA (lncRNA) AGAP2 antisense RNA 1 (AGAP2-AS1) has been suggested to function as an oncogenic lncRNA in lung cancer, breast cancer, and anaplastic glioma. However, the expression pattern and molecular mechanism of AGAP2-AS1 in glioblastoma multiforme (GBM) remains unknown. The purpose of this study is to present more evidence about the clinical and biological function of AGAP2-AS1 in GBM. In our results, we found AGAP2-AS1 expression was increased in GBM compared with adjacent normal brain tissues or low-grade glioma tissues, and there was no significantly different between low-grade glioma tissues and normal tissues. Kaplan-Meier survival analysis indicated patients with GBM having high-expression of AGAP2-AS1 had shorter overall survival time than those with low expression of AGAP2-AS1. The loss-of-function studies showed that downregulation of AGAP2-AS1 depressed cell proliferation, migration, and invasion, and promoted cell apoptosis in GBM. In summary, AGAP2-AS1 is a prognostic biomarker for patients with GBM, and functions as an oncogenic lncRNA to modulate GBM cell proliferation, apoptosis, migration, and invasion, which suggests that AGAP2-AS1 is potential therapeutic target for GBM.  相似文献   

11.
Glioblastoma multiforme (GBM) is the most common and lethal type of primary malignant brain tumor. In recent years, increasing reports suggest that discovery of microRNAs (miRNAs) might provide a novel therapeutical target for human cancers, including GBM. The expression and roles of microRNA-183 (miR-183) has been explored in several types of human cancers, including in GBM, and plays important roles in tumor initiation and progression. However, its biological functions in GBM remain largely unknown. In this study, we demonstrated that miR-183 was significantly up-regulated in astrocytoma tissues and glioblastoma cell lines. Introduction of miR-183 mimics into U251 cells could promoted, while its antisense oligos inhibited cell proliferation and invasion. Moreover, we identified neurofilament light polypeptide (NEFL) as a novel target gene of miR-183. The expression levels of NEFL are inversely correlated with that of miR-183 in human astrocytoma clinical specimens. In addition, NEFL-siRNA could significantly attenuate the inhibitory effects of knockdown miR-183 on the proliferation and invasion of U251 cells via mTOR signaling pathway. Overall, This study revealed that miR-183 promotes glioma cell proliferation by targeting NEFL, and also demonstrated that miR-183 could be a potential target for GBM treatment.  相似文献   

12.
LIN28, an evolutionarily conversed RNA binding protein which can bind to the terminal loops of let-7 family microRNA precursors and block their processing to maturation, is highly expressed in several subsets of tumors that carry poor prognoses, such as ovarian carcinoma, hepatocellular carcinoma, colon carcinoma and germ cell carcinoma. However, there has been no study on the expression of LIN28 in glioma tissues or their importance as a prognostic predictor of glioma patients. This study aimed to examine the expression of LIN28 in glioma and correlate the results to patient outcome. We found that LIN28 expression was significantly higher in the group of patients with a poor prognosis compared to patients with a good prognosis by gene microarray. Log-rank analysis showed patients with higher LIN28 expression level in tumor had a shorter progression-free survival and overall survival times compared to those with lower LIN28 expression level. Similar results were also obtained from the tissue microarray analysis. Univariate and multivariate analyses showed high LIN28 expression was an independent prognostic factor for a shorter progression-free survival and overall survival in GBM patients. Furthermore in vitro experiments showed that down-regulation of LIN28 in U251 and U373 cells caused cell cycle arrest in the G1 phase, delayed cell proliferation, increased apoptosis, and resulted in fewer colonies compared to controls. Summarily, our data provides a potential target for cancer therapy as an approach to overcome the poor options currently available for GBM patients.  相似文献   

13.
Sun Z  Li H  Shu XH  Shi H  Chen XY  Kong QY  Wu ML  Liu J 《The FEBS journal》2012,279(13):2381-2392
Glioblastoma multiforme (GBM) cells show different responses to resveratrol, for unknown reasons. Our data from human medulloblastoma cells and primary cultures of rat brain cells revealed an inverse correlation of sulfonation activity with resveratrol sensitivities, providing a clue to the underlying mechanisms of the variable sensitivities of GBM cells to resveratrol. In this study, we found that U251 cells were sensitive and LN229 cells were insensitive to resveratrol. Thus, these two cell lines were taken as comparable models for elucidating the influence of sulfonation activities on resveratrol sensitivity. HPLC showed identical resveratrol metabolic patterns in both cell lines. LC/MS and high-resolution mass MS analyses further demonstrated that resveratrol monosulfate generated by sulfotransferases (SULTs) was the major metabolite of human GBM cells. The levels of brain-associated SULT (SULT1A1, SULT1C2, and SULT4A1) expression in U251 cells were lower than those in LN229 cells, suggesting the inverse relationship of SULT-mediated sulfonation activity with high intracellular resveratrol bioavailability and resveratrol sensitivity of human GBM cells. Furthermore, immunohistochemical staining revealed reductions in expression of the three brain-associated SULTs in 72.8%, 47.5% and 66.3% of astrocytomas, respectively. Therefore, the levels of brain-associated SULTs and sulfonation activity mediated by them could be important parameters for evaluating the potential response of human GBM cells to resveratrol, and may have value in the personalized treatment of GBMs with resveratrol.  相似文献   

14.
Glioblastoma multiforme (GBM) is the most aggressive and highly vascularized brain tumor with poor prognosis. Endothelial cell-dependent angiogenesis and tumor cell-dependent Vasculogenic mimicry (VM) synergistically contribute to glioma vascularization and progression. However, the mechanism underlying GBM vascularization remains unclear. In this study, GBM stem cells (GSCs) were divided into high and low β8 integrin (ITGB8) subpopulations. Co-culture assays followed by Cell Counting Kit-8 (CCK-8), migration, Matrigel tube formation, and sprouting assays were conducted to assess the proliferative, migratory and angiogenic capacity of GBM cells and human brain microvascular endothelial cells (hBMECs). An intracranial glioma model was constructed to assess the effect of ITGB8 on tumor vascularization in vivo. Our results indicated that ITGB8 expression was elevated in GSCs and positively associated with stem cell markers in glioma tissues, and could be induced by hypoxia and p38 activation. ITGB8 in GSCs inhibited the angiogenesis of hBMECs in vitro, while it promoted the ability of network formation and expression of VM-related proteins. The orthotopic GBM model showed that ITGB8 contributed to decreased angiogenesis, meanwhile enhanced invasiveness and VM formation. Mechanistic studies indicated that ITGB8-TGFβ1 axis modulates VM and epithelial-mesenchymal transition (EMT) process via Smad2/3-RhoA signaling. Together, our findings demonstrated a differential role for ITGB8 in the regulation of angiogenesis and VM formation in GBM, and suggest that pharmacological inhibition of ITGB8 may represent a promising therapeutic strategy for treatment of GBM.Subject terms: Cancer stem cells, CNS cancer  相似文献   

15.
16.
The PI3K/AKT/mTOR pathway is commonly over activated in glioblastoma (GBM), and Rictor was shown to be an important regulator downstream of this pathway. EGFR overexpression is also frequently found in GBM tumors, and both EGFR and Rictor are associated with increased proliferation, invasion, metastasis and poor prognosis. This research evaluated in vitro and in vivo whether the combined silencing of EGFR and Rictor would result in therapeutic benefits. The therapeutic potential of targeting these proteins in combination with conventional agents with proven activity in GBM patients was also assessed. In vitro validation studies were carried out using siRNA-based gene silencing methods in a panel of three commercially available human GBM cell lines, including two PTEN mutant lines (U251MG and U118MG) and one PTEN-wild type line (LN229). The impact of EGFR and/or Rictor silencing on cell migration and sensitivity to chemotherapeutic drugs in vitro was determined. In vivo validation of these studies was focused on EGFR and/or Rictor silencing achieved using doxycycline-inducible shRNA-expressing U251MG cells implanted orthotopically in Rag2M mice brains. Target silencing, tumor size and tumor cell proliferation were assessed by quantification of immunohistofluorescence-stained markers. siRNA-mediated silencing of EGFR and Rictor reduced U251MG cell migration and increased sensitivity of the cells to irinotecan, temozolomide and vincristine. In LN229, co-silencing of EGFR and Rictor resulted in reduced cell migration, and increased sensitivity to vincristine and temozolomide. In U118MG, silencing of Rictor alone was sufficient to increase this line’s sensitivity to vincristine and temozolomide. In vivo, while the silencing of EGFR or Rictor alone had no significant effect on U251MG tumor growth, silencing of EGFR and Rictor together resulted in a complete eradication of tumors. These data suggest that the combined silencing of EGFR and Rictor should be an effective means of treating GBM.  相似文献   

17.
BackgroundGlioma is the most common cancer in the central nervous system. Previous studies have revealed that the miR-376 family is crucial in tumour development; however, its detailed mechanism in glioma is not clear.MethodsCellular mRNA or protein levels of miR-376a, SIRT1, VEGF and YAP1 were detected via qRT–PCR or Western blotting. We analysed the proliferation, angiogenesis and migration abilities of glioma cell lines using colony formation, tube formation and Transwell assays. A luciferase assay was performed to determine whether miR-376a could recognize SIRT1 mRNA. Xenograft experiments were performed to analyse the tumorigenesis capacity of glioma cell lines in nude mice. The angiogenesis marker CD31 in xenograft tumours was detected via immunohistochemistry (IHC).ResultsmiR-376a expression was lower in glioma cells than in normal astrocytes. miR-376a mimic inhibited SIRT1, YAP1, and VEGF expression and suppressed the proliferation, migration and angiogenesis abilities of the glioma cell lines LN229 and A172, whereas miR-376a inhibitor exerted the opposite functions. In a luciferase assay, miR-376a inhibited the luciferase activity of WT-SIRT1. SIRT1 overexpression upregulated YAP1 and VEGF in glioma cells and promoted proliferation, migration and angiogenesis. Xenografts with ectopic miR-376a expression exhibited lower volumes and weights and a slower growth curve. Overexpression of miR-376a inhibited YAP1/VEGF signalling and angiogenesis by inhibiting SIRT1 in xenograft tissues.ConclusionmiR-376a directly targets and inhibits SIRT1 in glioma cells. Downregulation of SIRT1 resulted in decreased YAP1 and VEGF signalling, which led to suppression of glioma cell proliferation, migration and angiogenesis.  相似文献   

18.
PKN1 (protein kinase N1), a serine/threonine protein kinase family member, is associated with various cancers. However, the role of PKN1 in gliomas has rarely been studied. We suggest that PKN1 expression in glioma specimens is considerably upregulated and positively correlates with the histopathological grading of gliomas. Knocking down PKN1 expression in glioblastoma (GBM) cells inhibits GBM cell proliferation, invasion and migration and promotes apoptosis. In addition, yes-associated protein (YAP) expression, an essential effector of the Hippo pathway contributing to the oncogenic role of gliomagenesis, was also downregulated. In contrast, PKN1 upregulation enhances the malignant characteristics of GBM cells and simultaneously upregulates YAP expression. Therefore, PKN1 is a promising therapeutic target for gliomas. Raloxifene (Ralo), a commonly used selective oestrogen-receptor modulator to treat osteoporosis in postmenopausal women, was predicted to target PKN1 according to the bioinformatics team from the School of Mathematics, Tianjin Nankai University. We showed that Ralo effectively targets PKN1, inhibits GBM cells proliferation and migration and sensitizes GBM cells to the major chemotherapeutic drug, Temozolomide. Ralo also reverses the effect of PKN1 on YAP activation. Thus, we confirm that PKN1 contributes to the pathogenesis of gliomas and may be a potential target for Ralo adjuvant glioma therapy.  相似文献   

19.
20.
The expression changes of baculovirus inhibitor of apoptosis repeat-containing protein5 in brain glioma after administration of Scutellarin was detected. To explore the effort of scutellarin on anti-glioma by downregulating BIRC5.The effect of scutellarin on tumour growth and animal survival was detected by administering scutellarin to nude mice subcutaneous tumour formation and SD rats in situ tumour formation models. A significantly different gene BIRC5 was found by using the combination of TCGA databases and network pharmacology. And then qPCR was performed to detect the expression of BIRC5 in glioma tissues, cells and normal brain tissues and glial cells. CCK-8 was used to detect the IC50 of scutellarin on glioma cells. The wound healing assay, flow cytometry and MTT test were used to detect the effect of scutellarin on the apoptosis and proliferation of glioma cells. The expression of BIRC5 in glioma tissues was significantly higher than that in normal brain tissues. Scutellarin can significantly reduce tumour growth and improve animal's survival. After scutellarin was administered, the expression of BIRC5 in U251 cells was significantly reduced. And after same time, apoptosis increased and cell proliferation was inhibited. This original research showed that scutellarin can promote the apoptosis of glioma cells and inhibit the proliferation by downregulating the expression of BIRC5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号