首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Polycomb repressive complexes (PRCs) play critical roles in cell fate decisions during normal development as well as disease progression through mediating histone modifications such as H3K27me3 and H2AK119ub. How exactly PRCs recruited to chromatin remains to be fully illuminated. Here, we report that YTHDF1, the N6-methyladenine (m6A) RNA reader that was previously known to be mainly cytoplasmic, associates with RNF2, a PRC1 protein that mediates H2AK119ub in human embryonic stem cells (hESCs). A portion of YTHDF1 localizes in the nuclei and associates with RNF2/H2AK119ub on a subset of gene loci related to neural development functions. Knock-down YTHDF1 attenuates H2AK119ub modification on these genes and promotes neural differentiation in hESCs. Our findings provide a noncanonical mechanism that YTHDF1 participates in PRC1 functions in hESCs.  相似文献   

9.
10.
11.
12.
13.
We report a new mechanism of androgen receptor (AR) mRNA regulation and cytoprotection in response to AR pathway inhibition (ARPI) stress in prostate cancer (PCA). AR mRNA translation is coordinately regulated by RNA binding proteins, YTHDF3 and G3BP1. Under ambient conditions m6A-modified AR mRNA is bound by YTHDF3 and translationally stimulated, while m6A-unmodified AR mRNA is bound by G3BP1 and translationally repressed. When AR-regulated PCA cell lines are subjected to ARPI stress, m6A-modified AR mRNA is recruited from actively translating polysomes (PSs) to RNA-protein stress granules (SGs), leading to reduced AR mRNA translation. After ARPI stress, m6A-modified AR mRNA liquid–liquid phase separated with YTHDF3, while m6A-unmodified AR mRNA phase separated with G3BP1. Accordingly, these AR mRNA messages form two distinct YTHDF3-enriched or G3BP1-enriched clusters in SGs. ARPI-induced SG formation is cell-protective, which when blocked by YTHDF3 or G3BP1 silencing increases PCA cell death in response to ARPI stress. Interestingly, AR mRNA silencing also delays ARPI stress-induced SG formation, highlighting its supportive role in triggering this stress response. Our results define a new mechanism for stress adaptive cell survival after ARPI stress involving SG-regulated translation of AR mRNA, mediated by m6A RNA modification and their respective regulatory proteins.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号