首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lessonia is the main Laminariales found along the southeast Pacific coast. Lessonia nigrescens Bory de Saint‐Vincent in the intertidal and Lessonia trabeculata Villouta et Santelices in the subtidal, are the most important habitat constructors in rocky coastal communities in northern and central Chile. In both species, the seasonal production and erosion of distal tissue were estimated in biomass units using the Area of Constant Biomass Model that combined the individual blade elongation, obtained with the traditional hole‐punching method, with the blade length and biomass distribution along the blade. In austral late spring (December 96) and autumn (May 97), blade production and erosion were transformed to the level of population from standing stock measurements (number and biomass of blades and plants per substrate area), considering that previous blade weight analysis showed the highest and lowest values at these times, as well as the population parameter extremes that were expected to occur. Both species displayed a seasonal pattern, with a production increase in later winter and spring and decrease towards the end of summer that coincided with higher distal tissue erosion. At the level of individual blades, Lessonia trabeculata showed higher mean production (0.026 g dw d−1) and erosion (0.01 g dw d−1) than L. nigrescens (production 0.01 g dw d−1 and loss 0.002 g dw d−1). The standing stocks, with respect to density and biomass, were similar in spring and autumn for both populations. Nevertheless, the net productivity (production minus erosion) of the intertidal L. nigrescens showed greater values due to the greater density of blades (2112 ± 1360 (SE) blades m−2) compared with the subtidal L. trabeculata (527 ± 151 (SE) blades m−2). Spring net productivities of 42 g dw m−2d−1 (254 g ww m−2d−1; 11.46 gC m−2d−1) for L. nigrescens and 11 g dw m−2 d−1 (64 g ww m−2 d−1; 2.46 gC m−2d−1) for L. trabeculata were estimated. A preliminary model of production and biomass fate for Lessonia populations is proposed.  相似文献   

2.
Release of dissolved organic carbon (DOC) by seaweed underpins the microbial food web and is crucial for the coastal ocean carbon cycle. However, we know relatively little of seasonal DOC release patterns in temperate regions of the southern hemisphere. Strong seasonal changes in inorganic nitrogen availability, irradiance, and temperature regulate the growth of seaweeds on temperate reefs and influence DOC release. We seasonally surveyed and sampled seaweed at Coal Point, Tasmania, over 1 year. Dominant species with or without carbon dioxide (CO2) concentrating mechanisms (CCMs) were collected for laboratory experiments to determine seasonal rates of DOC release. During spring and summer, substantial DOC release (10.06–33.54 μmol C · g DW−1 · h−1) was observed for all species, between 3 and 27 times greater than during autumn and winter. Our results suggest that inorganic carbon (Ci) uptake strategy does not regulate DOC release. Seasonal patterns of DOC release were likely a result of photosynthetic overflow during periods of high gross photosynthesis indicated by variations in tissue C:N ratios. For each season, we calculated a reef-scale net DOC release for seaweed at Coal Point of 7.84–12.9 g C · m−2 · d−1 in spring and summer, which was ~16 times greater than in autumn and winter (0.2–1.0 g C · m−2 · d−1). Phyllospora comosa, which dominated the biomass, contributed the most DOC to the coastal ocean, up to ~14 times more than Ecklonia radiata and the understory assemblage combined. Reef-scale DOC release was driven by seasonal changes in seaweed physiology rather than seaweed biomass.  相似文献   

3.
Productivity of Podostemum ceratophyllum, the dominant aquatic macrophyte in the New River, was measured at four sites representing soft- and hardwater reaches of the river. Available dissolved inorganic carbon (DIC) was 4–5 times greater in the hardwater reach. The difference in available DIC was reflected in standing crop and productivity of P. ceratophyllum. Maximum standing crops of P. ceratophyllum at the two hardwater sites (Sites 1 and 2) were 244.8 ± 30.7 g ash-free dry wt (AFDW) m−-2 and 193.8 ± 18.7 g AFDW m−-2 compared to 128.5 ± 14.9 g AFDW m−-2 and 101.3 ± 6.9 g AFDW m−-2 for the softwater sites (Sites 3 and 4). Productivity, based on differences in standing crops, was: Site 1, 1.08 ± 0.12 g C m−-2 d−-1; Site 2, 0.86 ± 0.08 g Cm−-2d−-1; Site 3,0.58 ± 0.06 g C m−-2 d−-1; Site 4,0.45 ± 0.03 g C m−-2 d−-1. Corresponding values for productivity as 14C uptake were: 2.77 ± 0.44 g C m−-2 d−-1; 2.10 ± 0.45 g C m−-2 d−-1; 0.34 ± 0.04 g C m−-2 d−-1; 0.28 ± 0.03 g C m−-2 d−-1. Productivity/biomass (P/B) based on 14C uptake and standing crop revealed that P. ceratophyllum productivity was inhibited at the softwater sites perhaps due to carbon limitation. Because of its abundance and its high productivity, P. ceratophyllum is hypothesized to contribute significantly to the New River organic matter budget.  相似文献   

4.
Kelps are in global decline due to climate change, which includes ocean warming. To identify vulnerable species, we need to identify their tolerances to increasing temperatures and determine whether tolerances are altered by co-occurring drivers such as inorganic nutrient levels. This is particularly important for those species with restricted distributions, which may already be experiencing thermal stress. To identify thermal tolerance of the range-restricted kelp Lessonia corrugata, we conducted a laboratory experiment on juvenile sporophytes to measure performance (growth, photosynthesis) across its thermal range (4–22°C). We determined the upper thermal limit for growth and photosynthesis to be ~22–23°C, with a thermal optimum of ~16°C. To determine if elevated inorganic nitrogen availability could enhance thermal tolerance, we compared the performance of juveniles under low (4.5 μmol · d−1) and high (90 μmol · d−1) nitrate conditions at and above the thermal optimum (16–23.5°C). Nitrate enrichment did not enhance thermal performance at temperatures above the optimum but did lead to elevated growth rates at the thermal optimum. Our results indicate L. corrugata is likely to be extremely susceptible to moderate ocean warming and marine heatwaves. Peak sea surface temperatures during summer in eastern and northeastern Tasmania can reach up to 20–21°C, and climate projections suggest that L. corrugata's thermal limit will be regularly exceeded by 2050 as southeastern Australia is a global ocean-warming hotspot. By identifying the upper thermal limit of L. corrugata, we have taken a critical step in predicting the future of the species in a warming climate.  相似文献   

5.
Coastal kelp forests produce substantial marine carbon due to high annual net primary production (NPP) rates, but upscaling of NPP estimates over time and space remains difficult. We investigated the impact of variable underwater photosynthetically active radiation (PAR) and photosynthetic parameters on photosynthetic oxygen production of Laminaria hyperborea, the dominant NE-Atlantic kelp species, throughout summer 2014. Collection depth of kelp had no effect on chlorophyll a content, pointing to a high photoacclimation potential of L. hyperborea towards incident light. However, chlorophyll a and photosynthesis versus irradiance parameters differed significantly along the blade gradient when normalized to fresh mass, potentially introducing large uncertainties in NPP upscaling to whole thalli. Therefore, we recommend a normalization to kelp tissue area, which is stable over the blade gradient. Continuous PAR measurements revealed a highly variable underwater light climate at our study site (Helgoland, North Sea) in summer 2014, reflected by PAR attenuation coefficients (Kd) between 0.28 and 0.87 m−1. Our data highlight the importance of continuous underwater light measurements or representative average values using a weighted Kd to account for large PAR variability in NPP calculations. Strong winds in August increased turbidity, resulting in a negative carbon balance at depths >3–4 m over several weeks, considerably impacting kelp productivity. Estimated daily summer NPP over all four depths was 1.48 ± 0.97 g C · m−2 seafloor · d−1 for the Helgolandic kelp forest, which is in the range of other kelp forests along European coastlines.  相似文献   

6.
Lake Valencia is heavily polluted by waste water of domestic, agricultural and industrial origin. The high organic load may have produced important changes in the limnological properties. Cyanobacteria dominated in numbers and biomass (over 90% throughout the year). Chlorophyll-a content averaged 37.7 + 15 μg · 1−1. Maximum concentrations of 50–80 μg · 1−1 were found near the inflows affected by organically polluted affluents. There has been a 50% reduction in the euphotic zone in only 13 years. The maximum rate of gross photosynthesis per hour at light saturation was determined within the uppermost 1-meter layer. The highest value was 16,290 mg O2 · m−3 · h−1. Lake Valencia is among the most productive lakes in the world, with areal net photosynthesis averaging 7.5 g C · m−2 · d−1.  相似文献   

7.
A combined system designed by converting the flow mixing chamber of an anaerobic filter into an UASB resulted in an increased efficiency of removal of organic matter of 92% and in a gas production of 4.64 l·l−1·d−1, at the highest organic loading rate tested compared with that of the unmodified anaerobic filter. Both reactors were tested using dairy industry wastewater at identical operating conditions at 30°C and organic loading rate between 1 to 8 g COD·l−1·d−1.  相似文献   

8.
Photosynthesis, transpiration, and leaf area distribution were sampled in mature Quercus virginiana and Juniperus ashei trees to determine the impact of leaf position on canopy-level gas exchange, and how gas exchange patterns may affect the successful invasion of Quercus communities by J. ashei. Sampling was conducted monthly over a 2-yr period in 12 canopy locations (three canopy layers and four cardinal directions). Photosynthetic and transpiration rates of both species were greatest in the upper canopy and decreased with canopy depth. Leaf photosynthetic and transpiration rates were significantly higher for Q. virginiana (4.1–6.7 μmol CO2·m−2·s−1 and 1.1–2.1 mmol H2O·m−2·s−1) than for J. ashei (2.1–2.8 μmol CO2·m−2·s−1 and 0.7–1.0 mmol H2O·m−2·s−1) in every canopy level and direction. Leaves on the south and east sides of both species had higher gas exchange rates than leaves on the north and west sides. Although Quercus had a greater mean canopy diameter than Juniperus (31.3 vs. 27.7 m2), J. ashei had significantly greater leaf area (142 vs. 58 m2/tree). A simple model combining leaf area and gas exchange rates for different leaf positions demonstrated a significantly greater total canopy carbon dioxide uptake for J. ashei compared to Q. virginiana (831 vs. 612 g CO2·tree−1·d−1, respectively). Total daily water loss was also greater for Juniperus (125 vs. 73 Ltree−1·d−1). Differences in leaf gas exchange rates were poor predictors of the relationship between the invasive J. ashei and the codominant Q. virginiana. Leaf area and leaf area distribution coupled with leaf gas exchange rates were necessary to demonstrate the higher overall competitive potential of J. ashei.  相似文献   

9.
Measurements of net photosynthesis (PS, O2 evolution), dark respiration (R, O2 consumption), and light and dark carbon fixation (14C) were conducted on whole blades, isolated blade discs, sporophylls, apical scimitars and representative portions of stipe and holdfast of the giant kelp Macrocystis pyrifera L.C. Ag. On a dry weight basis, highest net PS rates were observed in apical scimitar segments and whole blades (3.81 and 3.07 mgC · g dry wt?1· h?1, respectively), followed by sporophylls (1.42 mgC·g dry wt?1· h?1) and stipe segments (0.15 mgC·g dry wt?1· h?1). No PS capacity was observed in holdfast material. Respiration rates showed similar ranking ranging from 1.22 mgC·g dry wt?1·h?1 for apical scimitar to 0.18–0.22 mgC·g dry wt?1· h?1 for holdfast material. Considerable within blade variability in both PS and R was also found. Steepest PS and R gradients on both an areal and weight basis were found within immature blades followed by senescent and mature blade material. Highest net PS rates were associated with the blade tips ranging from 3.08 (mature blades) to 10.3 mgC·dry wt?1·h?1 (immature blades). Highest rates of R generally occurred towards the basal portions of blades and ranged from 1.03–1.80 mgC·g dry wt?1·h?1 for immature blades. The variability within and between blades was high, with coefficients of variation approaching 50%. The observed patterns can be related to the decreasing proportionment of photosynthetic tissue and increasing proportionment of structural tissue as occurs from the blade tip to the blade base. Rates of light carbon fixation (LCF) revealed longitudinal profiles similar to oxygen measurements for the different blade types, with the absolute rates being slightly lower. Patterns of dark carbon fixation (DCF) were less easily interpreted. Highest rates of DCF (0.04–0.06 mgC·g dry wt?1·h?1) occurred at the basal portions of immature and senescent blades. Longitudinal profiles of total chlorophyll (a + c) on both an areal and weight basis were very similar to the profiles of PS. Normalized to chlorophyll a, PS displayed an unusual longitudinal profile in immature tissue; however, such profiles for mature and senescent tissues were similar to those for PS on an areal basis. It was demonstrated that it is difficult, if not impossible, to select single tissue discs that are representative of whole blades. The metabolic longitudinal profiles reveal a characteristic developmental pattern; the previous working definitions of immature, mature, and senescent blades, based on morphology and frond position thus have a physiological basis.  相似文献   

10.
Simultaneous organic carbon removal-nitrification was carried out by an activated sludge process with cross-flow filtration while retaining a higher concentration of activated sludge. Operating the unit at ca. 0.10 gBOD·gVSS−1·d−1 made the sludge retention time very long and simultaneous carbon removal-nitrification was achieved quite well. Compared with conventional activated sludge processes, the present process made possible nearly twice the organic volumetric loading by increasing the sludge concentration five-fold. A nitrification rate of ca. 0.30 gTKN·l−1·d−1 was attained. More than 27% of the oxidized nitrogen in the reactor was denitrified at the same time in most cases.  相似文献   

11.
Peatlands cover 3% of the earth’s land surface but contain 30% of the world’s soil carbon pool. Microbial communities constitute a crucial detrital food web for nutrient and carbon cycling in peatlands. Heterotrophic protozoans are considered top predators in the microbial food web; however, they are not yet well understood. In this study, we investigated seasonal dynamics in the community and the trophic structure of testate amoebae in four peatlands. Testate amoebae density and biomass in August were significantly higher than those in May and October. The highest density, 6.7 × 104 individual g−1 dry moss, was recorded in August 2014. The highest biomass, 7.7 × 102 μg C g−1 dry moss, was recorded in August 2013. Redundancy analyses showed that water-table depth was the most important factor, explaining over one third of the variance in fauna communities in all sampled seasons. High trophic position taxa dominated testate amoebae communities. The Shannon diversity index and community size structure index declined from August to October in 2013 and from May to October in 2014. These seasonal patterns of testate amoebae indicated the seasonal variations of the peatlands’ microbial food web and are possibly related to the seasonal carbon dynamics in Northeast Chinese peatlands.  相似文献   

12.
Symbiodinium californium (#383, Banaszak et al. 1993 ) is one of two known dinoflagellate symbionts of the intertidal sea anemones Anthopleura elegantissima, A. xanthogrammica, and A. sola and occurs only in hosts at southern latitudes of the North Pacific. To investigate if temperature restricts the latitudinal distribution of S. californium, growth and photosynthesis at a range of temperatures (5°C–30°C) were determined for cultured symbionts. Mean specific growth rates were the highest between 15°C and 28°C (μ 0.21–0.26 · d?1) and extremely low at 5, 10, and 30°C (0.02–0.03 · d?1). Average doubling times ranged from 2.7 d (20°C) to 33 d (5, 10, and 30°C). Cells cultured at 10°C had the greatest cell volume (821 μm3) and the highest percentage of motile cells (64.5%). Growth and photosynthesis were uncoupled; light‐saturated maximum photosynthesis (Pmax) increased from 2.9 pg C · cell?1 · h?1 at 20°C to 13.2 pg C · cell?1 · h?1 at 30°C, a 4.5‐fold increase. Less than 11% of daily photosynthetically fixed carbon was utilized for growth at 5, 10, and 30°C, indicating the potential for high carbon translocation at these temperatures. Low temperature effects on growth rate, and not on photosynthesis and cell morphology, may restrict the distribution of S. californium to southern populations of its host anemones.  相似文献   

13.
Alkaline phosphatase activities of the diazotrophic marine cyanobacterium Trichodesmium were studied among natural populations in the northern Red Sea and in laboratory cultures of Trichodesmium sp. strain WH9601. Open-water tuft-shaped colonies of Trichodesmium showed high alkaline phosphatase activities with 2.4–11.7 μmol p-nitrophenylphosphate (PNPP) hydrolyzed·μg chl a 1·h 1, irrespective of date or origin of the sample. Coastal populations of the Trichodesmium tuft colonies had low alkaline phosphatase activities with 0.2–0.5 μmol PNPP·μg chl a 1·h 1. An exception was the Trichodesmium fall maximum, when both tuft colonies and the plankton community (<100 μm) had alkaline phosphatase activities of 0.6–7.4 μmol PNPP·μg chl a 1·h 1. Likewise, the more rare puff and bow-tie colonies of Trichodesmium spp. in coastal waters had elevated alkaline phosphatase activities (0.8–1.6 μmol PNPP·μg chl a 1·h 1) as compared with tuft colonies coinhabiting the same waters. Intact filaments of tuft-forming Trichodesmium sp. strain WH9601 from phosphate-replete cultures had a base alkaline phosphatase activity of 0.5 μmol PNPP·μg chl a 1·h 1. This activity underwent a 10-fold increase in phosphate-deplete cultures and in cultures supplied with glycerophosphate as the sole P source. The elevated level of alkaline phosphatase activity was sustained in P-deplete cultures, but it declined in cultures with glycerophosphate. The decline is suggested to result from feedback repression of alkaline phosphatase synthesis by the phosphate generated in the glycerophosphate hydrolysis. The enhanced alkaline phosphatase activities of Trichodesmium spp. populations provide evidence that P stress is an important factor in the ecology of Trichodesmium in the northern Red Sea.  相似文献   

14.

Coastal wetlands are key in regulating coastal carbon and nitrogen dynamics and contribute significantly to climate change mitigation and anthropogenic nutrient reduction. We investigated organic carbon (OC) and total nitrogen (TN) stocks and burial rates at four adjacent vegetated coastal habitats across the seascape elevation gradient of Cádiz Bay (South Spain), including one species of salt marsh, two of seagrasses, and a macroalgae. OC and TN stocks in the upper 1 m sediment layer were higher at the subtidal seagrass Cymodocea nodosa (72.3 Mg OC ha−1, 8.6 Mg TN ha−1) followed by the upper intertidal salt marsh Sporobolus maritimus (66.5 Mg OC ha−1, 5.9 Mg TN ha−1), the subtidal rhizophytic macroalgae Caulerpa prolifera (62.2 Mg OC ha−1, 7.2 Mg TN ha−1), and the lower intertidal seagrass Zostera noltei (52.8 Mg OC ha−1, 5.2 Mg TN ha−1). The sedimentation rates increased from lower to higher elevation, from the intertidal salt marsh (0.24 g cm−2 y−1) to the subtidal macroalgae (0.12 g cm−2 y−1). The organic carbon burial rate was highest at the intertidal salt marsh (91 ± 31 g OC m−2 y−1), followed by the intertidal seagrass, (44 ± 15 g OC m−2 y−1), the subtidal seagrass (39 ± 6 g OC m−2 y−1), and the subtidal macroalgae (28 ± 4 g OC m−2 y−1). Total nitrogen burial rates were similar among the three lower vegetation types, ranging from 5 ± 2 to 3 ± 1 g TN m−2 y−1, and peaked at S. maritimus salt marsh with 7 ± 1 g TN m−2 y−1. The contribution of allochthonous sources to the sedimentary organic matter decreased with elevation, from 72% in C. prolifera to 33% at S. maritimus. Our results highlight the need of using habitat-specific OC and TN stocks and burial rates to improve our ability to predict OC and TN sequestration capacity of vegetated coastal habitats at the seascape level. We also demonstrated that the stocks and burial rates in C. prolifera habitats were within the range of well-accepted blue carbon ecosystems such as seagrass meadows and salt marshes.

  相似文献   

15.
Feeding rates of Brachionus plicatilis were studied for two types of food — algae Monochrysis lutheri and baker's yeast Saccharomyces cerevisae. The main regularities of changes in filtration rate and ration were studied in small culture volumes (1 ml) for adult amictic females depending on food concentration (1, 2, 4, 8 and 16 · 106 cells · ml−1), ambient temperature (16 and 26 °C), and salinity (5, 10, 15, 20, 25 and 30 ppt). B. plicatilis ration did not depend on the salinity, but was largely determined by temperature and food concentration. It was found that at 16 and 26 °C the dependence of the ingestion rate (ration) on food concentration differed greatly. A hypothesis was suggested to explain this phenomenon. A critical concentration of both types of food at which the increase in the rotifer ration ceased is 4 · 106 cells · ml−1. This is the minimum “background” food concentration for B. plicatilis mass cultivation. The average rations measured at the concentration of M. lutheri and S. cerevisae of 4 · 106 cells · ml−1 where 1.3 ± 0.1 and 4.8 ± 1.3 μg dry weight. · ind−1 · day−1 at 26 °C and 0.54 ± 0.1 and 1.9 μg d. w. · ind−1 · day−1 at 16 °C, respectively. The rations obtained in the laboratory were corrected for the conditions of rotifer commercial production in the open field in summer time. The correct values were 0.86 and 0.72 μg d. w. · ind−1 · day−1 for algae and yeast, respectively.  相似文献   

16.
Macroalgae, often the dominant primary producers in shallow estuaries, can be important regulators of nitrogen (N) cycling. Like phytoplankton, actively growing macroalgae release N to the water column; yet little is known about the quantity or nature of this release. Using 15N labeling in laboratory and field experiments, we estimated the quantity of N released relative to assimilation and gross uptake by Gracilaria vermiculophylla (Ohmi) Papenfuss (Rhodophyta, Gracilariales), a non‐native macroalgae. Field experiments were carried out in Hog Island Bay, a shallow back‐barrier lagoon on the Virginia coast where G. vermiculophylla makes up 85%–90% of the biomass. There was good agreement between laboratory and field measurements of N uptake and release. Daily N assimilation in field experiments (32.3±7.2 μ mol N·g dw?1·d?1) was correlated with seasonal and local N availability. The average rate of N release across all sites and dates (65.8±11.6 μ mol N·g dw?1·d?1) was 67% of gross daily uptake, and also varied among sites and seasons (range=33%–99%). Release was highest when growth rates and nutrient availability were low, possibly due to senescence during these periods. During summer biomass peaks, estimated N release from macroalgal mats was as high as 17 mmol N·m?2·d?1. Our results suggest that most estimates of macroalgal N uptake severely underestimate gross N uptake and that N is taken up, transformed, and released to the water column on short time scales (minutes–hours).  相似文献   

17.
Due to their ecological, physiological, and molecular adaptations to low and varying temperatures, as well as varying seasonal irradiances, polar non-marine eukaryotic microalgae could be suitable for low-temperature biotechnology. Adaptations include the synthesis of compounds from different metabolic pathways that protect them against stress. Production of biological compounds and various biotechnological applications, for instance, water treatment technology, are of interest to humans. To select prospective strains for future low-temperature biotechnology in polar regions, temperature and irradiance of growth requirements (Q10 and Ea of 10 polar soil unicellular strains) were evaluated. In terms of temperature, three groups of strains were recognized: (i) cold-preferring where temperature optima ranged between 10.1 and 18.4°C, growth rate 0.252 and 0.344 · d−1, (ii) cold- and warm-tolerating with optima above 10°C and growth rate 0.162–0.341 · d−1, and (iii) warm-preferring temperatures above 20°C and growth rate 0.249–0.357 · d−1. Their light requirements were low. Mean values Q10 for specific growth rate ranged from 0.7 to 3.1. The lowest Ea values were observed on cold-preferring and the highest in the warm-preferring strains. One strain from each temperature group was selected for PN and RD measurements. The PN:RD ratio of the warm-preferring strains was less affected by temperature similarly as Q10 and Ea. For future biotechnological applications, the strains with broad temperature tolerance (i.e., the group of cold- and warm-tolerating and warm-preferring strains) will be most useful.  相似文献   

18.
Growth, blade shape and blade thickness of young gametophytes of Porphyra abbottae Krishnamurthy cultured from conchospores were determined at various combinations of temperature (8, 10, 12° C), photon flux density (17.5, 70, 140 μmol·m-?2·S?1), nutrient concentration (5, 25, 50, 100% f medium) and water motion (0, 50, 100, 150 rpm). Growth (as surface area) was light-saturated at 70 μmol· m?2· S?1, light-inhabited at 140 μmol·m?2· S?1, and nutrient-saturated an 25% f medium. Temperature had no significant effect on growth. Water motion and nutrients had an interactive effect on growth, with water motion having the greatest effect at the lowest nutrient concentrations. Water motion enhanced growth even at saturating nutrient concentrations. Blade length / width ratio was greater in low light (2.5) than in saturating light (1.9); with increasing water motion the ratio increased from 1.2 to 2.4. Blade thickness (53-88 μm) was greatest at the highest nutrient concentrations and at the lowest water motion levels. Temperature and light did not have a consistent effect on blade thickness.  相似文献   

19.
Physical-chemical conditions, phytoplankton productivity, community structure and productivity of the macroinvertebrate benthic community were determined during 1976–77 in a subtropical reservoir. Physical-chemical results revealed high nitrate and phosphate concentrations with highest values in the riverine segment. Large phytoplankton populations were present during most of the year. Phytoplankton productivity was high, producing an annual mean of 87 mg C · m−3 · h−1 (12 hours light day). High turbidity in the riverine segment limited phytoplankton productivity during winter and spring. Macrobenthos was dominated by chironomids (Chironomus, Procladius, Coelotanypus and Tanypus) and oligochaetes (Limnodrilus). The annual mean benthic population was estimated at 1,626 · m−2 with a mean dry weight of 0.66 g · m−2. Mean benthic species diversity was 1.80. A lacustrine-riverine community gradient was revealed. Benthic productivity was 6.8 g · m−2 · yr−1 (dry weight) with a P: B ratio of 10. A low correlation was observed between benthic and phytoplankton productivity, and between phytoplankton standing crop and benthic macroinvertebrate numbers throughout the reservoir. Algal food supplies had little impact on the benthic community which was composed predominately of species which fed mostly on organic detritus. Stressful conditions caused by low dissolved oxygen concentrations probably inhibited development of the benthic community throughout the reservoir during summer months, while high sedimentation rates limited development in the head waters.  相似文献   

20.
Li H L  Zhi Y B  Zhao L  An S Q  Deng Z F  Zhou C F  Gu S P 《农业工程》2007,27(7):2725-2732
Nitrogen and phosphorus are both important life elements. N, P and combined N-P fertilizers were added to the declining population Spartina anglica Hubbard in coastal China. Some growth parameters and eco-physiological responses of S. anglica to different fertilizer treatments (N, P and combined N-P fertilizer addition with high, medium and low levels, respectively) were measured. The fertilizer addition had a highly significant effect on the dynamics of its height-growth, number of leaves, number of roots and total biomass. Only N addition had a significant effect on leaf area and leaf thickness in all fertilizer treatments. On the dynamics of its height-growth, the effect of N addition was the most apparent, and the effect of N-P addition was not greater than those of N and P addition separately. The photosynthesis rate was enhanced and the yield was the highest with the highest N, the highest N-P and the medium P addition. The rates were higher than those of CK by 19.08 μmol·m?2·s?1, 15.47 μmol·m?2·s?1 and 11.23 μmol·m?2·s?1, respectively. The activity of SOD and POD increased with the treatments after freshwater stress for 14 days. Effects of medium N and P addition were significant for SOD activity. However, POD activity was significantly higher with the treatment of higher N and higher N-P addition. In a word, fertilizer addition improved the growth of the declining population S. anglica. The results indicated that the decline of S. anglica was correlated with the nutriment deficiency in soil, especially with the lack of N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号