首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Transposable elements derived from the 7SL RNA gene, such as Alu elements in primates, have had remarkable success in several mammalian lineages. The results presented here show a broad spectrum of functions for genomic segments that display sequence composition similarities with the 7SL RNA gene. Using thoroughly documented loci, we report that DNaseI-hypersensitive sites can be singled out in large genomic sequences by an assessment of sequence composition similarities with the 7SL RNA gene. We apply a root word frequency approach to illustrate a distinctive relationship between the sequence of the 7SL RNA gene and several classes of functional genomic features that are not presumed to be of transposable origin. Transposable elements that show noticeable similarities with the 7SL sequence include Alu sequences, as expected, but also long terminal repeats and the 5′-untranslated regions of long interspersed repetitive elements. In sequences masked for repeated elements, we find, when using the 7SL RNA gene as query sequence, distinctive similarities with promoters, exons and distal gene regulatory regions. The latter being the most notoriously difficult to detect, this approach may be useful for finding genomic segments that have regulatory functions and that may have escaped detection by existing methods.  相似文献   

2.
3.
4.
5.
Genetic studies have revealed that segment determination in Drosophila melanogaster is based on hierarchical regulatory interactions among maternal coordinate and zygotic segmentation genes. The gap gene system constitutes the most upstream zygotic layer of this regulatory hierarchy, responsible for the initial interpretation of positional information encoded by maternal gradients. We present a detailed analysis of regulatory interactions involved in gap gene regulation based on gap gene circuits, which are mathematical gene network models used to infer regulatory interactions from quantitative gene expression data. Our models reproduce gap gene expression at high accuracy and temporal resolution. Regulatory interactions found in gap gene circuits provide consistent and sufficient mechanisms for gap gene expression, which largely agree with mechanisms previously inferred from qualitative studies of mutant gene expression patterns. Our models predict activation of Kr by Cad and clarify several other regulatory interactions. Our analysis suggests a central role for repressive feedback loops between complementary gap genes. We observe that repressive interactions among overlapping gap genes show anteroposterior asymmetry with posterior dominance. Finally, our models suggest a correlation between timing of gap domain boundary formation and regulatory contributions from the terminal maternal system.  相似文献   

6.
随着后基因组时代的到来,非编码区的研究已经成为科学家面临的挑战,对基因非编码区的一个主要研究方向就是对调控元件的研究。识别转录调控元件是理解基因转录机制和表达模式的关键。较全面地介绍了基因非编码区以及调控元件,包括功能和作用,常用识别算法,并对常用数据库进行介绍,提出可能的研究方法和发展方向。  相似文献   

7.
We previously reported that genomic major histocompatibility complex class I human leukocyte antigen (HLA)-B7 gene constructs with as little as 0.66 kb of 5'- and 2.0 kb of 3'-flanking DNA were expressed efficiently and appropriately in transgenic mice. To identify and characterize the relevant cis-acting regulatory elements in more detail, we have generated and analyzed a series of transgenic mice carrying native HLA-B7 genes with further 5' truncations or intronic deletions and hybrid constructs linking the 5'-flanking region of B7 to a reporter gene. We were unable to detect a specific requirement for sequence information within introns 2 to 7 for either appropriate constitutive or inducible class I expression in adult animals. The results revealed the presence of cis-acting regulatory sequences between -0.075 kb and -0.66 kb involved in driving efficient copy number-dependent constitutive and gamma interferon-enhanced tissue-specific expression. The region from -0.11 to -0.66 kb is also sufficient to prevent integration site-specific "position effects," because in its absence HLA-B7 expression is frequently detected at significant levels at inappropriate sites. Conserved sequence elements homologous to the H-2 class I regulatory element, or enhancer A, and the interferon response sequence are located between about -151 and -228 bp of the B7 gene. Our results also indicate the existence of sequences downstream of -0.11 kb which can influence the pattern of tissue-specific expression of the HLA-B7 gene and the ability of this gene to respond to gamma interferon.  相似文献   

8.
Organismal development and many cell biological processes are organized in a modular fashion, where regulatory molecules form groups with many interactions within a group and few interactions between groups. Thus, the activity of elements within a module depends little on elements outside of it. Modularity facilitates the production of heritable variation and of evolutionary innovations. There is no consensus on how modularity might evolve, especially for modules in development. We show that modularity can increase in gene regulatory networks as a byproduct of specialization in gene activity. Such specialization occurs after gene regulatory networks are selected to produce new gene activity patterns that appear in a specific body structure or under a specific environmental condition. Modules that arise after specialization in gene activity comprise genes that show concerted changes in gene activities. This and other observations suggest that modularity evolves because it decreases interference between different groups of genes. Our work can explain the appearance and maintenance of modularity through a mechanism that is not contingent on environmental change. We also show how modularity can facilitate co-option, the utilization of existing gene activity to build new gene activity patterns, a frequent feature of evolutionary innovations.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Stochastic phenomena in gene regulatory networks can be modelled by the chemical master equation for gene products such as mRNA and proteins. If some of these elements are present in significantly higher amounts than the rest, or if some of the reactions between these elements are substantially faster than others, it is often possible to reduce the master equation to a simpler problem using asymptotic methods. We present examples of such a procedure and analyse the relationship between the reduced models and the original.  相似文献   

16.

Background  

Cis-regulatory modules are combinations of regulatory elements occurring in close proximity to each other that control the spatial and temporal expression of genes. The ability to identify them in a genome-wide manner depends on the availability of accurate models and of search methods able to detect putative regulatory elements with enhanced sensitivity and specificity.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号