首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specific recognition of homopurine–homo pyrimidine regions in duplex DNA by triplex-forming oligonucleotides (TFOs) provides an attractive strategy for genetic manipulation. Alkylation of nucleobases with functionalized TFOs would have the potential for site-directed mutagenesis. Recently, we demonstrated that a TFO bearing 2-amino-6-vinylpurine derivative, 1, achieves triplex-mediated reaction with high selectivity toward the cytosine of the G-C target site. In this report, we have investigated the use of this reagent to target mutations to a specific site in a shuttle vector plasmid, which replicates in mammalian cells. TFOs bearing 1 produced adducts at the complementary position of 1 and thereby introduced mutations at that site during replication/repair of the plasmid in mammalian cells. Reagents that produce covalent cytosine modifications are relatively rare. These TFOs enable the preparation of templates carrying targeted cytosine adducts for in vitro and in vivo studies. The ability to target mutations may prove useful as a tool for studying DNA repair, and as a technique for gene therapy and genetic engineering.  相似文献   

2.
Proteins which bind to nucleic acids and regulate their structure and functions are numerous and exceptionally important. Such proteins employ a variety of strategies for recognition of the relevant structural elements in their nucleic acid substrates, some of which have been shown to involve rather subtle interactions which might have been difficult to design from first principles. In the present study, we have explored the preparation of proteins containing unnatural amino acids having nucleobase side chains. In principle, the introduction of multiple nucleobase amino acids into the nucleic acid binding domain of a protein should enable these modified proteins to interact with their nucleic acid substrates using Watson-Crick and other base pairing interactions. We describe the synthesis of five alanyl nucleobase amino acids protected in a fashion which enabled their attachment to a suppressor tRNA, and their incorporation into each of two proteins with acceptable efficiencies. The nucleobases studied included cytosine, uracil, thymine, adenine and guanine, i.e. the major nucleobase constituents of DNA and RNA. Dihydrofolate reductase was chosen as one model protein to enable direct comparison of the facility of incorporation of the nucleobase amino acids with numerous other unnatural amino acids studied previously. The Klenow fragment of DNA polymerase I was chosen as a representative DNA binding protein whose mode of action has been studied in detail.  相似文献   

3.
Triplex-directed DNA recognition is strictly limited by polypurine sequences. In an attempt to address this problem with synthetic biology tools, we designed a panel of short chimeric α,β-triplex-forming oligonucleotides (TFOs) and studied their interaction with fluorescently labelled duplex hairpins using various techniques. The hybridization of hairpin with an array of chimeric probes suggests that recognition of double-stranded DNA follows complicated rules combining reversed Hoogsteen and non-canonical homologous hydrogen bonding. In the presence of magnesium ions, chimeric TFOs are able to form highly stable α,β-triplexes, as indicated by native gel-electrophoresis, on-array thermal denaturation and fluorescence-quenching experiments. CD spectra of chimeric triplexes exhibited features typically observed for anti-parallel purine triplexes with a GA or GT third strand. The high potential of chimeric α,β-TFOs in targeting double-stranded DNA was demonstrated in the EcoRI endonuclease protection assay. In this paper, we report, for the first time, the recognition of base pair inversions in a duplex by chimeric TFOs containing α-thymidine and α-deoxyguanosine.  相似文献   

4.
Triple helix forming oligonucleotides (TFOs) that bind chromosomal targets in living cells may become tools for genome manipulation, including gene knockout, conversion, or recombination. However, triplex formation by DNA third strands, particularly those in the pyrimidine motif, requires nonphysiological pH and Mg(2+) concentration, and this limits their development as gene-targeting reagents. Recent advances in oligonucleotide chemistry promise to solve these problems. For this study TFOs containing 2'-O-methoxy (2'-OMe) and 2'-O-(2-aminoethyl) (2'-AE) ribose substitutions in varying proportion have been constructed. The TFOs were linked to psoralen and designed to target and mutagenize a site in the hamster HPRT gene. T(m) analyses showed that triplexes formed by these TFOs were more stable than the underlying duplex, regardless of 2'-OMe/2'-AE ratio. However, TFOs with 2'-AE residues were more stable in physiological pH than those with only 2'-OMe sugars, as a simple function of 2'-AE content. In contrast, gene knockout assays revealed a threshold requirement--TFOs with three or four 2'-AE residues were at least 10-fold more active than the TFO with two 2'-AE residues. The HPRT knockout frequencies with the most active TFOs were 300-400-fold above the background, whereas there was no activity against the APRT gene, a monitor of nonspecific mutagenesis.  相似文献   

5.
Triple helix forming oligonucleotides (TFOs) may have utility as gene targeting reagents for "in situ" gene therapy of genetic disorders. Triplex formation is challenged by negative charge repulsion between third strand and duplex phosphates, and destabilizing positive charge repulsion between adjacent protonated cytosines within pyrimidine motif third strands. Here we describe the synthesis of TFOs designed to target a site in the human beta-globin gene, which is the locus for mutations that underlie the beta-globinopathies, including sickle cell anemia. The target is an uninterrupted polypurine:polypyrimidine sequence, containing four adjacent cytosines, next to a psoralen cross-link site. Pyrimidine motif TFOs that contained four adjacent cytosines or 5-methylcytosines did not form stable triplexes at physiological pH, despite the introduction of otherwise stabilizing base and sugar analogues. We synthesized a series of pso-TFOs containing 2'-O-methyl (OMe) and 2'-O-aminoethoxy substitutions (AE), as well as 8-oxo-adenine (A8) and 2'-O-methylpseudoisocytidine (P) as neutral cytosine replacements. Thermal stability measurements indicated that TFOs with A8 did not meet criteria established in previous work. However, TFOs with P did form triplexes with appropriate T(m) and k(ON) values. A pso-TFO with AE and P residues was sufficiently active to permit the determination of targeting in living cells by direct measurement of cross-link formation at the target site. Our results validate the modification format described in our previous studies and indicate that P substitutions are an effective solution to the problem of targeting genomic sequences containing adjacent cytosines.  相似文献   

6.
Triple helix-forming oligonucleotides (TFOs) have been demonstrated to be capable of interfering with gene expression and modifying genomic DNA in a sequence-specific manner. Partial incorporation of 2'-O,4'-C-methylene linked locked nucleic acid (LNA) residues in TFOs has been shown to enhance significantly triple helix formation, whereas the full-length LNA TFO failed to form a stable triplex. This work is aimed at understanding the triple helix-forming properties of LNA-containing TFOs and at optimally designing their sequences. Both DNA thermal melting, gel retardation, and restriction enzyme experiments as well as modeling studies by molecular mechanics were carried out to investigate the base composition/sequence and pH-dependence effects of LNA-containing TFOs, as well as their structural features underlying triple helix formation. Alternating LNA substitution every 2-3 nucleotides in TFOs is mandatory, whereas the use of thymine LNA residues should be favored under neutral pH conditions. A rule for designing optimal LNA-containing TFOs is proposed. In addition, alternative LNA and 2'-O-methyl residues in TFOs do not significantly improve triple helix formation.  相似文献   

7.
A protected 2-aminopurine nucleoside suitable for incorporation into oligodeoxynucleotides using phosphite triester chemical synthesis procedures has been prepared via oxidation of a purine hydrazino derivative with silver (I) oxide. Five oligodeoxynucleotides containing Eco RI and Bam HI recognition sites have been prepared such that, in the double stranded form, the 2-aminopurine base has either a complementary thymine or cytosine nucleobase. The helix character and thermodynamic parameters for helix formation have been examined.  相似文献   

8.
Triplex-forming oligonucleotides (TFOs), as DNA-binding molecules that recognize specific sequences, offer unique potential for the understanding of processes occurring on DNA and associated functions. They are also powerful DNA recognition elements for the positioning of ubiquitous molecules acting on DNA, such as anticancer drugs. A prerequisite for further development of DNA code-reading molecules including TFOs is their ability to form a complex in a cellular context: their binding affinities must be comparable to those of DNA-associated proteins. To reach this goal, chemically modified TFOs must be developed. In this work, we present triplex-forming properties (kinetics and thermodynamics) and cellular activity of G-containing locked nucleic acid-modified TFOs (TFO/LNAs). In conditions simulating physiological ones, these TFO/LNAs strongly enhanced triplex stability compared with the non-modified TFO or with the pyrimidine TFO/LNA directed against the same oligopyrimidine.oligopurine sequence, mainly by decreasing the dissociation rate constant and conferring an entropic gain. We provide evidence of their biological activity by a triplex-based mechanism, in vitro and in a cellular context, under conditions in which the parent phosphodiester oligonucleotide did not exhibit any inhibitory effect.  相似文献   

9.
Bernal-Méndez E  Leumann CJ 《Biochemistry》2002,41(41):12343-12349
A series of chimaeric DNA/RNA triplex-forming oligonucleotides (TFOs) with identical base sequence but varying sequential composition of the sugar residues were prepared. The structural, kinetic, and thermodynamic properties of triplex formation with their corresponding double-helical DNA target were investigated by spectroscopic methods. Kinetic and thermodynamic data were obtained from analysis of nonequilibrium UV-melting and annealing curves in the range of pH 5.1-6.7 in a 10 mM citrate/phosphate buffer containing 0.1 M NaCl and 1 mM EDTA. It was found that already single substitutions of ribo- for deoxyribonucleotides in the TFOs greatly affect stability and kinetics of triplex formation in a strongly sequence dependent manner. Within the sequence context investigated, triplex stability was found to increase when deoxyribonucleotides were present at the 5'-side and ribonucleotides in the center of the TFO. Especially the substitution of thymidines for uridines in the TFO was found to accelerate both the association and dissociation process in a strongly position-dependent way. Differential structural information on triplexes and TFO single-strands was obtained from CD-spectroscopy and gel mobility experiments. Only minor changes were observed in the CD spectra of the triplexes at all pH values investigated, and the electrophoretic mobility was nearly identical in all cases, indicating a high degree of structural similarity. In contrast, the single-stranded TFOs showed high structural variability, as determined in the same way. The results are discussed in the context of the design of TFOs for therapeutic or biochemical applications.  相似文献   

10.
Oligonucleotides capable of sequence-specific triple helix formation have been proposed as DNA binding ligands useful for modulation of gene expression and for directed genome modification. However, the effectiveness of such triplex-forming oligonucleotides (TFOs) depends on their ability to bind to their target sites within cells, and this can be limited under physiologic conditions. In particular, triplex formation in the pyrimidine motif is favored by unphysiologically low pH and high magnesium concentrations. To address these limitations, a series of pyrimidine TFOs were tested for third-strand binding under a variety of conditions. Those containing 5-(1-propynyl)-2'-deoxyuridine (pdU) and 5-methyl-2'-deoxycytidine (5meC) showed superior binding characteristics at neutral pH and at low magnesium concentrations, as determined by gel mobility shift assays and thermal dissociation profiles. Over a range of Mg2+ concentrations, pdU-modified TFOs formed more stable triplexes than did TFOs containing 2'-deoxythymidine. At 1 mM Mg2+, a DeltaTm of 30 degreesC was observed for pdU- versus T-containing 15-mers (of generic sequence 5' TTTTCTTTTTTCTTTTCT 3') binding to the cognate A:T bp rich site, indicating that pdU-containing TFOs are capable of substantial binding even at physiologically low Mg2+ concentrations. In addition, the pdU-containing TFOs were superior in gene targeting experiments in mammalian cells, yielding 4-fold higher mutation frequencies in a shuttle vector-based mutagenesis assay designed to detect mutations induced by third-strand-directed psoralen adducts. These results suggest the utility of the pdU substitution in the pyrimidine motif for triplex-based gene targeting experiments.  相似文献   

11.
The rates of cleavage of DNAs containing substituents at position 5 of thymine or cytosine have been measured for a variety of sequence-specific endonucleases, so as to determine which features in the DNA sequence are being probed. Phage phi e DNA fully substituted with 5-hydroxymethyluracil is cleaved more slowly by enzymes whose recognition sequences contain A-T base pairs than are DNAs containing thymine, but both types of DNA are cleaved at similar rates by enzymes recognizing sequences composed only of G-C base pairs. Phage PBS2 DNA with uracil completely substituted for thymine is cleaved slowly by several enzymes which recognize sequences containing A-T base pairs (endonucleases Hpa I, HindII, and HindIII), while the rates of cleavage by other enzymes (endonucleases EcoRI and BamHI) are not affected. Phage lambda- and P22 DNAs containing 5-bromouracil are cleaved more slowly by several enzymes (endonucleases HindIII, Hpa I, BamHI) than are thymine-containing DNAs. Enzymes that recognize sequence isomers with the composition G:C:2A:2T (endonucleases EcoRI, Hpa I, HindIII) are not equally affected by substitution at position 5 of thymine, suggesting that they differ in their contacts with A-T base pairs. DNA containing glucosylated 5-hydroxymethylcytosine in place of cytosine is resistant to cleavage by all the endonucleases examined.  相似文献   

12.
We have developed a simple new method that can identify the base methylated by a sequence-specific DNA methyltransferase and have used it to identify the cytosine that is methylated by DsaV methyltransferase (M. DsaV) within its recognition sequence 5'-CCNGG. The method utilizes the fact that exonuclease III of E. coli does not degrade DNA ends with 3' overhangs and cannot hydrolyze a phosphorothioate linkage. DNA duplexes containing phosphorothioate linkages at specific positions were methylated with M. DsaV in the presence of [methyl-3H] S-adenosylmethionine and were subjected to exonuclease III digestion. The pattern of [methyl-3H] dCMP release from the duplexes was consistent with the methylation of the internal cytosine in CCNGG, but not of the outer cytosine. To establish the accuracy of this method, we confirmed the known specificity of EcoRII methyltransferase by the method. We also confirmed the specificity of M. DsaV using an established biochemical method that involves the use of a type IIS restriction enzyme. Methylation of CCWGG (W = A or T) sequences at the internal cytosines is native to E. coli and is not restricted by the modified cytosine restriction (Mcr) systems. Surprisingly, the gene for M. DsaV was significantly restricted by the McrBC system. We interpret this to mean that M. DsaV may occasionally methylate at sequences other than CCNGG or may occasionally methylate the outer cytosine in its recognition sequence.  相似文献   

13.
Binding of triple helix forming oligonucleotides to sites in gene promoters   总被引:41,自引:0,他引:41  
A class of triplex-forming oligodeoxyribonucleotides (TFOs) is described that can bind to naturally occurring sites in duplex DNA at physiological pH in the presence of magnesium. The data are consistent with a structure in which the TFO binds in the major groove of double-stranded DNA to form a three-stranded complex that is superficially similar to previously described triplexes. The distinguishing features of this class of triplex are that TFO binding apparently involves the formation of hydrogen-bonded G.GC and T.AT triplets and the TFO is bound antiparallel with respect to the more purine-rich strand of the underlying duplex. Triplex formation is described for targets in the promoter regions of three different genes: the human c-myc and epidermal growth factor receptor genes and the mouse insulin receptor gene. All three sites are relatively GC rich and have a high percentage of purine residues on one strand. DNase I footprinting shows that individual TFOs bind selectively to their target sites at pH 7.4-7.8 in the presence of millimolar concentrations of magnesium. Electrophoretic analysis of triplex formation indicates that specific TFOs bind to their target sites with apparent dissociation constants in the 10(-7)-10(-9) M range. Strand orientation of the bound TFOs was confirmed by attaching eosin or an iron-chelating group to one end of the TFO and monitoring the pattern of damage to the bound duplex DNA. Possible hydrogen-bonding patterns and triplex structures are discussed.  相似文献   

14.
DNA recognition by triplex-forming oligonucleotides (TFOs) is usually limited by homopurine-homopyrimidine sequence in duplexes. Modifications of the third strand may overcome this limitation. Chimeric alpha-beta TFOs are expected to form triplex DNA upon binding to non-regular sequence duplexes. In the present study we describe binding properties of chimeric alpha-beta oligodeoxynucleotides in the respect to short DNA duplexes with one, three, and five base pair inversions. Non-natural chimeric TFO's contained alpha-thymidine residues inside (GT) or (GA) core sequences. Modified residues were addressed to AT/TA inversions in duplexes. It was found in the non-denaturing gel-electrophoresis experiments that single or five adjacent base pair inversions in duplexes may be recognized by chimeric alpha-beta TFO's at 10 degrees C and pH 7.8. Three dispersed base pair inversions in the double stranded DNA prevented triplex formation by either (GT) or (GA) chimeras. Estimation of thermal stability of chimeric alpha-beta triplexes showed decrease in T(m) values as compared with unmodified complexes.  相似文献   

15.
The consecutive arrangement of 2′-deoxy-6-thioguanosines (s6Gs) and 4-thiothymidines (s4Ts) in antiparallel triplex-forming oligonucleotides (TFOs) considerably stabilized the resulting antiparallel triplexes with high base recognition ability by the strong stacking effects of thiocarbonyl groups. This result was remarkable because chemical modifications of the sugar moieties and nucleobases of antiparallel TFOs generally destabilize triplex structures. Moreover, in comparison with unmodified TFOs, it was found that TFOs containing s6Gs and s4Ts could selectively bind to the complementary DNA duplex but not to mismatched DNA duplexes or single-stranded RNA.  相似文献   

16.
DNA cytosine-5 methyltransferase (DNMT) catalyzes methylation at the C5 position of cytosine in the CpG sequence in double stranded DNA to give 5-methylCpG (mCpG) in the epigenetic regulation step in human cells. The entire reaction mechanism of DNMT is divided into six steps, which are scanning, recognition, flipping, loop locking, methylation, and releasing. The methylation and releasing mechanism are well-investigated; however, few reports are known about other reaction steps. To obtain insight into the reaction mechanism, we planned the incorporation of acyclic nucleosides, which make it easy to flip out the target nucleobase, into oligodeoxynucleotides (ODNs) and investigated the interaction between the ODN and DNMT. Here, we describe the design and synthesis of ODNs containing new acyclic 5-fluorocytosine nucleosides and their physiological and biological properties, including their interactions with DNMT. We found that the ODNs containing the acyclic 5-fluorocytosine nucleoside showed higher flexibility than those that contain 5-fluoro-2′-deoxycytidine. The observed flexibility of ODNs is expected to influence the scanning and recognition steps due to the decrease in helicity of the B-form.  相似文献   

17.
Mycoplasma bacteriophage L51 single-stranded DNA and L2 double-stranded DNA are host cell modified and restricted when they transfect Acholeplasma laidlawii JA1 and K2 cells. The L51 genome has a single restriction endonuclease MboI site (recognition sequence GATC), which contains 5-methylcytosine when the DNA is isolated from L51 phage grown in K2 cells but is unmethylated when the DNA is from phage grown in JA1 cells. This GATC sequence is nonessential, since an L51 mutant in which the MboI site was deleted was still viable. DNA from this deletion mutant phage was not restricted during transfection of either strain K2 or JA1. Therefore, strain K2 restricts DNA containing the sequence GATC, and strain JA1 restricts DNA containing the sequence GAT 5-methylcytosine. We conclude that K2 cells have a restriction system specific for DNA containing the sequence GATC and protect their DNA by methylating cytosine in this sequence. In contrast, JA1 cells (which contain no methylated DNA bases) have a newly discovered type of restriction-modification system. From results of studies of the restriction of specifically methylated DNAs, we conclude that JA1 cells restrict DNA containing 5-methylcytosine, regardless of the nucleotide sequence containing 5-methylcytosine. This is the first report of a DNA restriction activity specific for a single (methylated) base. Modification in this system is the absence of cytosine methylating activity. A restriction-deficient variant of strain JA1, which retains the JA1 modification phenotype, was isolated, indicating that JA1 cells have a gene product with restriction specificity for DNA containing 5-methylcytosine.  相似文献   

18.
Triplex-forming oligonucleotides (TFOs) are powerful tools to interfere sequence-specifically with DNA-associated biological functions. (A/T,G)-containing TFOs are more commonly used in cells than (T,C)-containing TFOs, especially C-rich sequences; indeed the low intracellular stability of the non-covalent pyrimidine triplexes make the latter less active. In this work we studied the possibility to enhance DNA binding of (T,C)-containing TFOs, aiming to reach cellular activities; to this end, we used locked nucleic acid-modified TFOs (TFO/LNAs) in association with 5′-conjugation of an intercalating agent, an acridine derivative. In vitro a stable triplex was formed with the TFO-acridine conjugate: by SPR measurements at 37°C and neutral pH, the dissociation equilibrium constant was found in the nanomolar range and the triplex half-life ~10 h (50-fold longer compared with the unconjugated TFO/LNA). Moreover to further understand DNA binding of (T,C)-containing TFO/LNAs, hybridization studies were performed at different pH values: triplex stabilization associated with pH decrease was mainly due to a slower dissociation process. Finally, biological activity of pyrimidine TFO/LNAs was evaluated in a cellular context: it occurred at concentrations ~0.1 μM for acridine-conjugated TFO/LNA (or ~2 μM for the unconjugated TFO/LNA) whereas the corresponding phosphodiester TFO was inactive, and it was demonstrated to be triplex-mediated.  相似文献   

19.
DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site.  相似文献   

20.
The DNA methyltransferase M.HhaI is an excellent model for understanding how recognition of a nucleic acid substrate is translated into site-specific modification. In this study, we utilize direct, real-time monitoring of the catalytic loop position via engineered tryptophan fluorescence reporters to dissect the conformational transitions that occur in both enzyme and DNA substrate prior to methylation of the target cytosine. Using nucleobase analogues in place of the target and orphan bases, the kinetics of the base flipping and catalytic loop closure rates were determined, revealing that base flipping precedes loop closure as the rate-determining step prior to methyl transfer. To determine the mechanism by which individual specific hydrogen bond contacts at the enzyme-DNA interface mediate these conformational transitions, nucleobase analogues lacking hydrogen bonding groups were incorporated into the recognition sequence to disrupt the major groove recognition elements. The consequences of binding, loop closure, and catalysis were determined for four contacts, revealing large differences in the contribution of individual hydrogen bonds to DNA recognition and conformational transitions on the path to catalysis. Our results describe how M.HhaI utilizes direct readout contacts to accelerate extrication of the target base that offer new insights into the evolutionary history of this important class of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号