首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Algal taste and odour is usually associated with open water blooms and eutrophic systems. However, some algal species can produce high biomass under ice‐cover, even at low nutrient concentrations, that can impact water quality. This paper describes a winter odour outbreak in oligotrophic Glenmore Reservoir (Calgary, Alberta, Canada), the major algal species, volatile organic compounds (VOCs) and some treatment implications. 2. Using sensory, chemical and microscope analyses, we monitored odour, algal biomass and taxa, bacteria and major nutrients. In a preliminary assessment of the effectiveness of standard water treatment with this type of algal biomass and odour, we used bench‐scale tests and sampled raw water from the Glenmore treatment plant at successive treatment stages. 3. In the winter of 1999–2000 Glenmore ice‐cover was delayed, nutrients were characteristically low (TP < ~5 μg L–1), but organic carbon and bacteria were higher than in previous years. 4. During this period there was an increase in algal biomass dominated by the mixotrophic chrysoflagellate Dinobryon divergens. Temporal dynamics of this species were inversely correlated with bacteria, and biomass declined following the establishment of ice‐cover, while depth profiles showed the highest abundance at subsurface layers. This suggested that the population outbreak was triggered by high bacteria abundance but depended on a minimum amount of light, consistent with in vitro studies of other mixotrophic chrysophytes. 5. Other non‐bactiverous taxa were also numerous, notably Asterionella formosa, cryptomonads, dinoflagellates and the synurophyte Synura petersenii. 6. Raw water odour was characteristically fishy, mainly caused by the VOCs 2,4,7‐decatrienal, 2,4‐heptadienal and 2,4‐decadienal. Based on algal population and VOC dynamics, these compounds were attributed to Dinobryon. Trace amounts of 2,6‐nonadienal (S. petersenii) and 1,3,5 and 1,3,6‐octatriene (A. formosa) were also detected. It was concluded that 2,4,7‐decatrienal was the major source of the raw water odour. 7. Sensory and microscopic analyses of pre‐ and post‐treatment samples in the treatment plant indicated a complete removal of odour, but only a 30–60% removal of algal biomass and evident rupture of residual algal cells. Laboratory experiments showed that using standard treatment, chlorination rapidly oxidized 2,4,7‐decatrienal and 2,6‐nonadienal but had little effect on 2,4‐hepta‐ and decadienal.  相似文献   

2.
Brevetoxin (PbTx) is a neurotoxic secondary metabolite of the dinoflagellate Karenia brevis. We used a novel, fluorescent BODIPY‐labeled conjugate of brevetoxin congener PbTx‐2 (B‐PbTx) to track absorption of the metabolite into a variety of marine microbes. The labeled toxin was taken up and brightly fluoresced in lipid‐rich regions of several marine microbes including diatoms and coccolithophores. The microzooplankton (20–200 μm) tintinnid ciliate Favella sp. and the rotifer Brachionus rotundiformis also took up B‐PbTx. Uptake and intracellular fluorescence of B‐PbTx was weak or undetectable in phytoplankton species representative of dinoflagellates, cryptophytes, and cyanobacteria over the same (4 h) time course. The cellular fate of two additional BODIPY‐conjugated K. brevis associated secondary metabolites, brevenal (B‐Bn) and brevisin (B‐Bs), were examined in all the species tested. All taxa exhibited minimal or undetectable fluorescence when exposed to the former conjugate, while most brightly fluoresced when treated with the latter. This is the first study to observe the uptake of fluorescently‐tagged brevetoxin conjugates in non‐toxic phytoplankton and zooplankton taxa, demonstrating their potential in investigating whether marine microbes can serve as a significant biological sink for algal toxins. The highly variable uptake of B‐PbTx observed among taxa suggests some may play a more significant role than others in vectoring lipophilic toxins in the marine environment.  相似文献   

3.
Microalgal bloom events can cause major ecosystem disturbances, devastate local marine economies, and endanger public health. Therefore, detecting and monitoring harmful microalgal taxa is essential to ensure effective risk management in waterways used for fisheries, aquaculture, recreational activity, and shipping. To fully understand the current status and future direction of algal bloom distributions, we need to know how populations and ecosystems have changed over time. This baseline knowledge is critical for predicting ecosystem responses to future anthropogenic change and will assist in the future management of coastal ecosystems. We explore a NGS metabarcoding approach to rapidly identify potentially harmful microalgal taxa in 63 historic and modern Australian marine port and ballast tank sediment samples. The results provide a record of past microalgal distribution and important baseline data that can be used to assess the efficacy of shipping guidelines, nutrient pollution mitigation, and predict the impact of climate change. Critically, eDNA surveys of archived sediments were able to detect harmful algal taxa that do not produce microscopic fossils, such as Chattonella, Heterosigma, Karlodinium, and Noctiluca. Our data suggest a potential increase in Australian harmful microalgal taxa over the past 30 years, and confirm ship ballast tanks as key dispersal vectors. These molecular mapping tools will assist in the creation of policies aimed at reducing the global increase and spread of harmful algal taxa and help prevent economic and public‐health problems caused by harmful algal blooms.  相似文献   

4.
Aim The larval stages of marine taxa are often assumed to have an overriding influence on the phylogeographical structure of a species as well as on rates of speciation. Phylogeographical disjunctions in high‐dispersal marine taxa are generally attributed to historical events or contemporary ecological factors. The lack of genetic structure in low‐dispersal marine taxa is often ascribed to rafting by juveniles, yet few studies discuss the effects of historical conditions. Around peninsular Florida, there are three species of the crown conch, Melongena, which have direct‐developing, crawl‐away larvae. One of these species, M. corona, is subdivided into three subspecies. We refer to these five taxa as the corona complex. We assessed the validity of these taxa and tested for patterns of phylogeographical subdivision. Location Intertidal Florida and eastern Alabama, USA, Mexico and Panama. Methods The mitochondrial DNA cytochrome c oxidase subunit I, and ribosomal DNA 16S genes were sequenced from adult individuals representing all extant taxa of Melongena. Phylogenetic trees were constructed under maximum likelihood analysis (heuristic search with tree bisection–reconnection branch‐swapping) using the program paup *. Results Sequence variability in the complex was low and suggested no systematic or phylogeographical partitioning in the corona complex. The species complex probably consists of a single lineage exhibiting no clear pattern of genetic partitioning over the entire range. Main conclusions The present study supports the designation of only four extant species within the genus: M. corona, M. patula, M. melongena and M. bispinosa. The subspecies M. corona corona, M. c. johnstonei and M. c. altispira, and the species M. sprucecreekensis and M. bicolor, should all be considered to be M. corona. Surprisingly, even with very low larval and adult vagility, no population subdivisions were noted in our genetic analyses. Our analyses also substantiate the paraphyletic status of the family Melongenidae.  相似文献   

5.
6.
Previous phylogenetic studies of the Rhodophyta have provided a framework for understanding red algal phylogeny, but there still exists the need for a comprehensive analysis using a broad sampling of taxa and sufficient phylogenetic information to clearly define the major lineages. In this study, we determined 48 sequences of the PSI P700 chl a apoprotein A1 (psaA) and rbcL coding regions and established a robust red algal phylogeny to identify the major clades. The tree included most of the lineages of the Bangiophyceae (25 genera, 48 taxa). Seven well‐supported lineages were identified with this analysis with the Cyanidiales having the earliest divergence and being distinct from the remaining taxa; i.e. the Porphyridiales 1–3, Bangiales, Florideophyceae, and Compsopogonales. We also analyzed data sets with fewer taxa but using seven proteins or the DNA sequence from nine genes to resolve inter‐clade relationships. Based on all of these analyses, we propose that the Rhodophyta contains two new subphyla, the Cyanidiophytina with a single class, the Cyanidiophyceae, and the Rhodophytina with six classes, the Bangiophyceae, Compsopogonophyceae, Florideophyceae, Porphyridiophyceae classis nov. (which contains Porphyridium, Flintiella, and Erythrolobus), Rhodellophyceae, and Stylonematophyceae classis nov. (which contains Stylonema, Bangiopsis, Chroodactylon, Chroothece, Purpureofilum, Rhodosorus, Rhodospora, and Rufusia). We also describe a new order, Rhodellales, and a new family, Rhodellaceae (with Rhodella, Dixoniella, and Glaucosphaera).  相似文献   

7.
Prokaryotic Nostoc, one of the world's most conspicuous and widespread algal genera (similar to eukaryotic algae, plants, and animals) is known to support a microbiome that influences host ecological roles. Past taxonomic characterizations of surface microbiota (epimicrobiota) of free‐living Nostoc sampled from freshwater systems employed 16S rRNA genes, typically amplicons. We compared taxa identified from 16S, 18S, 23S, and 28S rRNA gene sequences filtered from shotgun metagenomic sequence and used microscopy to illuminate epimicrobiota diversity for Nostoc sampled from a wetland in the northern Chilean Altiplano. Phylogenetic analysis and rRNA gene sequence abundance estimates indicated that the host was related to Nostoc punctiforme PCC 73102. Epimicrobiota were inferred to include 18 epicyanobacterial genera or uncultured taxa, six epieukaryotic algal genera, and 66 anoxygenic bacterial genera, all having average genomic coverage ≥90X. The epicyanobacteria Geitlerinemia, Oscillatoria, Phormidium, and an uncultured taxon were detected only by 16S rRNA gene; Gloeobacter and Pseudanabaena were detected using 16S and 23S; and Phormididesmis, Neosynechococcus, Symphothece, Aphanizomenon, Nodularia, Spirulina, Nodosilinea, Synechococcus, Cyanobium, and Anabaena (the latter corroborated by microscopy), plus two uncultured cyanobacterial taxa (JSC12, O77) were detected only by 23S rRNA gene sequences. Three chlamydomonad and two heterotrophic stramenopiles genera were inferred from 18S; the streptophyte green alga Chaetosphaeridium globosum was detected by microscopy and 28S rRNA genes, but not 18S rRNA genes. Overall, >60% of epimicrobial taxa were detected by markers other than 16S rRNA genes. Some algal taxa observed microscopically were not detected from sequence data. Results indicate that multiple taxonomic markers derived from metagenomic sequence data and microscopy increase epimicrobiota detection.  相似文献   

8.
9.
Members of various algal lineages are known to be strong producers of atmospherically relevant halogen emissions, that is a consequence of their capability to store and metabolize halogens. This study uses a noninvasive, synchrotron‐based technique, X‐ray absorption spectroscopy, for addressing in vivo bromine speciation in the brown algae Ectocarpus siliculosus, Ascophyllum nodosum, and Fucus serratus, the red algae Gracilaria dura, G. gracilis, Chondrus crispus, Osmundea pinnatifida, Asparagopsis armata, Polysiphonia elongata, and Corallina officinalis, the diatom Thalassiosira rotula, the dinoflagellate Lingulodinium polyedrum and a natural phytoplankton sample. The results highlight a diversity of fundamentally different bromine storage modes: while most of the stramenopile representatives and the dinoflagellate store mostly bromide, there is evidence for Br incorporated in nonaromatic hydrocarbons in Thalassiosira. Red algae operate various organic bromine stores – including a possible precursor (by the haloform reaction) for bromoform in Asparagopsis and aromatically bound Br in Polysiphonia and Corallina. Large fractions of the bromine in the red algae G. dura and C. crispus and the brown alga F. serratus are present as Br? defects in solid KCl, similar to what was reported earlier for Laminaria parts. These results are discussed according to different defensive strategies that are used within algal taxa to cope with biotic or abiotic stresses.  相似文献   

10.
In the western Atlantic Ocean, the brown algal genus Lobophora is currently represented by a single species, L. variegata, with a type locality designated by Lamouroux as ‘Antilles’. In this study, we used molecular-assisted alpha taxonomy (MAAT) to assess species diversity of Lobophora in Bermuda, the Florida Keys, St. Croix and Guadeloupe (Lesser Antilles). Using cox1 and cox3 sequences as barcode markers, five species of Lobophora, four of them novel, were delineated, all previously having been identified in the area as L. variegata. Our morphological and habitat studies, made possible by abundant sampling, have revealed unique characters for each of these western Atlantic species, including distinct cellular arrangements, as well as different depth ranges for certain species. Observations made from Lamouroux’s holotype of Dictyota variegata (= Lobophora variegata) allowed us to assess the anatomy of this species, which enabled us to easily align this early taxon to one of our genetic species from the western Atlantic. As the type was unavailable for genetic analysis, we selected a recent St. Croix (Virgin Is., Antilles) specimen as the epitype to support it with molecular sequence data.  相似文献   

11.
We cloned a full‐length tyrosine hydroxylase cDNA from the integument of the diamondback moth, Plutella xylostella. In the phylogenetic tree, tyrosine hydroxylase (PxTH) clustered with the other lepidopteran THs. Serine residues in the PxTH sequence, namely Ser24, Ser31, Ser35, Ser53, and Ser65, were predicted to be the target sites for phosphorylation based on PROSITE analysis. In particular, Ser35 of PxTH is highly conserved across a broad phylogenetic range of animal taxa including rat and human. Western blot analysis using both PxTH‐Ab1 and PxTH‐Ab2 polyclonal antibodies verified the expression of PxTH in all life cycle stages of P. xylostella, namely the larval, pupal, and adult stages. To examine the possible immune function of PxTH in P. xylostella, PxTH gene expression was investigated by RT‐PCR and western blotting analysis after challenging P. xylostella with bacteria. PxTH expression was elevated 1 h post‐infection and was continued till 12 h of post‐infection relative to control larvae injected with sterile water. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
The diatom genera Licmophora and Fragilaria are frequent epiphytes on marine macroalgae and can be infected by intracellular parasitoids traditionally assigned to the oomycete genus Ectrogella. Much debate and uncertainty remains about the taxonomy of these oomycetes, not least due to their morphological and developmental plasticity. Here, we used single‐cell techniques to obtain partial sequences of the parasitoids 18S and cox2 genes. The former falls into two recently identified clades of Pseudo‐nitzschia parasites temporarily named OOM_1_2 and OOM_2, closely related to the genera of brown and red algal pathogens Anisolpidium and Olpidiopsis. A third group of sequences falls at the base of the red algal parasites assigned to Olpidiopsis. In one instance, two oomycete parasitoids seemed to co‐exist in a single diatom cell; this co‐occurrence of distinct parasitoid taxa not only within a population of diatom epiphytes, but also within the same host cell, possibly explains the ongoing confusion in the taxonomy of these parasitoids. We demonstrate the polyphyly of Licmophora parasitoids previously assigned to Ectrogella (sensu Sparrow, 1960) and show that parasites of red algae assigned to the genus Olpidiopsis are most likely not monophyletic. We conclude that combining single‐cell microscopy and molecular methods is necessary for their full characterisation.  相似文献   

13.
Isoprene is a volatile and climate‐altering hydrocarbon with an atmospheric concentration similar to that of methane. It is well established that marine algae produce isoprene; however, until now there was no specific information about marine isoprene sinks. Here we demonstrate isoprene consumption in samples from temperate and tropical marine and coastal environments, and furthermore show that the most rapid degradation of isoprene coincides with the highest rates of isoprene production in estuarine sediments. Isoprene‐degrading enrichment cultures, analysed by denaturing gradient gel electrophoresis and 454 pyrosequencing of the 16S rRNA gene and by culturing, were generally dominated by Actinobacteria, but included other groups such as Alphaproteobacteria and Bacteroidetes, previously not known to degrade isoprene. In contrast to specialist methane‐oxidizing bacteria, cultivated isoprene degraders were nutritionally versatile, and nearly all of them were able to use n‐alkanes as a source of carbon and energy. We therefore tested and showed that the ubiquitous marine hydrocarbon‐degrader, Alcanivorax borkumensis, could also degrade isoprene. A mixture of the isolates consumed isoprene emitted from algal cultures, confirming that isoprene can be metabolized at low, environmentally relevant concentrations, and suggesting that, in the absence of spilled petroleum hydrocarbons, algal production of isoprene could maintain viable populations of hydrocarbon‐degrading microbes. This discovery of a missing marine sink for isoprene is the first step in obtaining more robust predictions of its flux, and suggests that algal‐derived isoprene provides an additional source of carbon for diverse microbes in the oceans.  相似文献   

14.
The trophic interactions of the marine rotifer Synchaeta cecilia were investigated by determining its feeding and growth rates on a wide variety of marine phytoplankton and by determining its susceptibility to predation by the calanoid copepod, Acartia tonsa. Reproduction of S. cecilia was sustained in four-day feeding trails by 13 of 37 algal species tested. Growth-supporting species included species of Cryptophyceae, Dinophyceae, Chlorophyceae and Haptophyceae in sizes from 4 to 47 μm. Within these taxa, other species in the acceptable size range failed to support growth. No species of Cyanophyceae, Bacillariophyceae, or Chrysophyceae supported growth of the rotifer. S. cecilia can be maintained on unialgal cultures of Cryptophyceae but growth is enhanced by a combination of two or three species; a mixture of Chroomonas salina (Cryptophyceae), Heterocapsa pygmaea (Dinophyceae), and Isochrysis galbana (Haptophyceae) has sustained laboratory stocks of S. cecilia for over four years. The expected response of S. cecilia to food quantity was observed: as food concentration was increased from 58 to 1154 μg C 1−1, the population growth constant increased from 0.17 to 0.60 d−1 at 20°C. This is equivalent to population doubling times of 4.0 and 1.1 days at H. pygmaea densities of 500 and 104 cells ml−1, respectively. The susceptibility of S. cecilia to predation was investigated by determining its rate of capture by the omnivorous marine copepod Acartia tonsa. At prey densities of 5 to 35 μg C 1−1 (0.3 to 1.9 individuals 1−1), A. tonsa readily ingested S. cecilia at rates up to 3 μg C copepod−1 day−1.  相似文献   

15.
Aim In this continental‐scale study, the biodiversity of benthic and planktonic algal communities was explored. A recent analysis of extinct and extant tree communities by Enquist et al. (2002) showed that richness of higher taxa was a power function of species richness, invariant across temporal and spatial scales. Here we examined whether the relationships between algal richness at hierarchical taxonomic levels conform to power laws as seen for trees, and if these relationships differ between benthic and planktonic habitats. Location Streams from more than 50 major watersheds in the United States. Method A total of 3698 samples were collected from 1277 locations by the National Water‐Quality Assessment Program. Three types of stream habitat were sampled: richest targeted habitats, depositional targeted habitats, and phytoplankton. The relationships between taxonomic richness at the species level vs. all higher categories from genus to phylum across the three habitats were examined by ordinary least squares (OLS) regressions after ln‐transformation of all variables. The slopes, b, of these regressions represent the exponents of the power functions that scaled the richness of higher taxonomic levels (T) to species richness (S) in the form: TSb. Results Algal richness at hierarchical taxonomic categories (genus to phylum) is a power function of species richness. The scaling exponent of this function, which captures the diversification of higher taxa, i.e. the rate of increase of their richness with the increase of species richness, is significantly different across environments. Main conclusions The differential algal diversification in the three studied habitats emphasizes the fundamental role of the environment in structuring the communities of simple organisms such as algae. The finding that the diversification of higher taxa is greater in the seemingly homogeneous planktonic environment, when compared to benthic habitats, encompassing an array of ecological niches, poses a new paradox of the plankton.  相似文献   

16.
Nandini  S.  Sarma  S. S. S. 《Hydrobiologia》2004,526(1):157-163
Although oligochaete worms naturally coexist with cladocerans in many shallow freshwater ponds and lakes, their influence on the latter is not well established. In this work we studied the effect of Aeolosoma sp. on the population growth of Alona rectangula, Ceriodaphnia dubia, Daphnia pulex, Macrothrix triserialis and Moina macrocopa. Population growth studies were conducted at one algal food density (1 × 106cells ml–1 of Chlorella vulgaris). The experimental design was similar for all five cladoceran species, where we used 100 ml capacity transparent jars containing 50 ml of EPA medium with the desired algal density and three replicates for each treatment. The test medium was changed daily and fresh algal food was added. The initial density of each of the cladoceran species in the population growth studies was 0.4 ind ml–1 while that of the worms 1.0 ind ml–1. Following inoculation, we estimated daily the number of cladocerans and the worms for duration of 21 days. Regardless of the presence of worms, Moina macrocopa and Macrothrix triserialis showed rapid population growth while A. rectangula took more than 2 weeks to reach peak abundances. With the exception of M. triserialis, all the other our cladoceran species declined in the presence of Aeolosoma sp. The lowest peak population density (about 1 ind ml–1) was observed for M. triserialisin controls. The remaining species had peak densities of about 3–5 ind ml–1. The rates of population increase per day varied from 0.03 to 0.19 depending on the cladoceran taxa and the treatment. In general we found that pelagic taxa were more adversely affected by the presence of the worms than were the littoral cladocerans.  相似文献   

17.
Damming, and thus alteration of stream flow, promotes higher phytoplankton populations and encourages algal blooms (density >106 cells L–1) in the Three Gorges Reservoir (TGR). Phytoplankton composition and biomass were studied in the Yangtze River from March 2004 to May 2005. 107 taxa were identified. Diatoms were the dominant group, followed by Chlorophyta and Cyanobacteria. In the Yangtze River, algal abundance varied from 3.13 × 103 to 3.83 × 106 cells L–1, and algal biomass was in the range of 0.06 to 659 mg C m–3. Levels of nitrogen, phosphorus and silica did not show consistent longitudinal changes along the river and were not correlated with phytoplankton parameters. Phytoplankton abundance was negatively correlated with main channel discharge (Spearman r = –1.000, P < 0.01). Phytoplankton abundance and biomass in the Yangtze River are mainly determined by the hydrological conditions rather than by nutrient concentrations. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The marine algal biotoxin, domoic acid (DA), is produced by certain members of the diatom genus Pseudo-nitzschia. This neurotoxin has been responsible for several mass mortality events involving marine birds and mammals. In all cases, the toxin was transferred from its algal producers through marine food webs by one or more intermediate vectors. The ability of some copepod taxa to serve as vectors for DA has been demonstrated; however, the role played in DA trophic transfer by Calanus finmarchicus, which often dominates N. Atlantic zooplankton assemblages and is a primary dietary component of the highly endangered N. Atlantic right whale (Eubalaena glacialis), has been uncertain. In the present study, we examined the ability of C. finmarchicus to consume DA-producing algae and retain the toxin. Results of grazing and toxin accumulation/depuration experiments showed that C. finmarchicus consumed DA-producing Pseudo-nitzschia multiseries regardless of the presence or absence of morphologically similar, but non-toxic, P. pungens, across initial cell concentrations ranging from 1000-4000 cells mL− 1. Furthermore, C. finmarchicus did not appear to preferentially consume or avoid either Pseudo-nitzschia species tested. After ingestion of P. multiseries, copepods accumulated DA and retained it for up to 48 h post-removal of the toxin source. These findings provide evidence for the potential of C. finmarchicus to facilitate DA trophic transfer in marine food webs where toxic Pseudo-nitzschia is present.  相似文献   

19.
The algal communities of the Flower Garden Banks National Marine Sanctuary have not been comprehensively evaluated and only a few dominant macroalgal species have been reported. This study utilizes both destructive and non‐destructive sampling techniques to characterize and taxonomically identify the ‘algal mat’ community structure. The East and West Flower Garden Banks are located on the outer continental shelf approximately 200 km off the Texas‐Louisiana coastline. The average depth of both banks is 100 m with the crest approximately 20 m from the surface. Harvest and photogrammetric samples were collected during two extended cruises to the Flower Garden Banks in October 1998 and March 1999. Forty, 0.25‐m2 quadrats of standing stock material were randomly collected along with one hundred sixty‐one 0.25 m2 photo‐quadrats from an average depth of 27 m. Photo‐transparencies were projected to an actual size grid with 25 random points. Four thousand twenty‐five transparency points were evaluated and used to calculate percent composition of algal cover. Harvest samples were used to characterize the “algal mat” composition, species richness, abundance, and biomass. Forty‐two species were identified from the samples representing 14 Orders. The “red algal mat” was the dominant algal coverage comprising 38.4% of all photogrammetric samples. This mat was primarily composed of members from the Order Ceramiales. Centroceras, Ceramium, and Polysiphonia comprised 33.4% of the mat, Anotrichium and Hypoglossum, 22.4%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号