首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human platelet-derived transforming growth factor-beta (TGF-beta 1) increases the accumulation of the extracellular matrix proteins, fibronectin and type I collagen, in mesenchymal and epithelial cells. To determine the basis for this effect, we have examined the levels of mRNAs corresponding to fibronectin and alpha 2(I) procollagen in NRK-49 rat fibroblasts and L6E9 rat myoblasts treated with TGF-beta 1. TGF-beta 1 increased severalfold the levels of mRNAs for both proteins. The kinetics of this effect were similar for both mRNA species. The increase in fibronectin and alpha 2(I) procollagen mRNAs was detectable 2 h after addition of TGF-beta 1 to the cells and their maximal levels remained constant for several days. Actinomycin D, but not cycloheximide, inhibited the increase in fibronectin and alpha 2(I) procollagen mRNA levels induced by TGF-beta 1. The results indicate that TGF-beta 1 controls the composition and abundance of extracellular matrices at least in part by inducing a coordinate increase in the levels of fibronectin and type I collagen mRNAs.  相似文献   

2.
3.
F9 mouse teratocarcinoma stem cells differentiate into parietal endoderm cells in the presence of retinoic acid, dibutyryl cyclic AMP, and theophylline (RACT). When F9 cells are exposed to 2-5 mM sodium butyrate plus RACT, they fail to differentiate. Differentiation is assessed by induction of laminin and collagen IV mRNA, the synthesis of laminin, collagen IV and plasminogen activator proteins, and alterations in cell morphology. Butyrate inhibits differentiation only when added within 8 hr after retinoic acid addition. Thus an early event in retinoid action on F9 cells is butyrate-sensitive. The population doubling time and cell cycle distribution of F9 cells are not altered within the first 24 hr after butyrate addition, suggesting that butyrate does not inhibit differentiation by inhibition of growth or normal cycling. However, butyrate does inhibit histone deacetylation in F9 cells, and this could be the mechanism by which butyrate inhibits differentiation.  相似文献   

4.
5.
6.
7.
8.
9.
We have examined the effects of the "differentiating agent," sodium butyrate, on the induction of alkaline phosphatase in human colonic tumor cell line LS174T. Culture of these cells in the presence of 2 mM butyrate caused this activity to increase from less than 0.0001 unit/mg of protein to greater than 0.7 unit/mg of protein over an 8-day period. This induction proceeded in a nonlinear fashion with a lag time of 2-3 days occurring before enzymatic activity began to rise. These increases in activity were accompanied by elevations in the content of a placental-like isozyme of alkaline phosphatase as demonstrated by "Western" immunoblots. Dome formation, indicative of differentiation in cultured cells, also required 3 days treatment with butyrate before becoming evident. The rate of biosynthesis of the enzyme, examined using metabolic labeling with L-[35S]methionine and immunoprecipitation, was found to increase continuously between days 2 and 6 of butyrate treatment. "Northern" blot analysis indicated that treatment of these cells with butyrate caused greater than 20-fold induction of a 2700-base mRNA that hybridized to a cDNA probe for placental alkaline phosphatase. The mRNA for alkaline phosphatase produced by these cells upon butyrate treatment was approximately 300-400 bases smaller than the mRNA for alkaline phosphatase found in placenta. Human small intestine also contained two mRNAs that hybridized relatively weakly with the placental alkaline phosphatase probe. These results indicate that a placental alkaline phosphatase-like protein and mRNA are induced by butyrate in LS174T cells with a time course consistent with cellular differentiation preceding induction.  相似文献   

10.
11.
Reconstituted basement membranes and extracellular matrices have been demonstrated to affect, positively and dramatically, the production of milk proteins in cultured mammary epithelial cells. Here we show that both the expression and the deposition of extracellular matrix components themselves are regulated by substratum. The steady-state levels of the laminin, type IV collagen, and fibronectin mRNAs in mammary epithelial cells cultured on plastic dishes and on type I collagen gels have been examined, as has the ability of these cells to synthesize, secrete, and deposit laminin and other, extracellular matrix proteins. We demonstrate de novo synthesis of a basement membrane by cells cultured on type I collagen gels which have been floated into the medium. Expression of the mRNA and proteins of basement membranes, however, are quite low in these cultures. In contrast, the levels of laminin, type IV collagen, and fibronectin mRNAs are highest in cells cultured on plastic surfaces, where no basement membrane is deposited. It is suggested that the interaction between epithelial cells and both basement membrane and stromally derived matrices exerts a negative influence on the expression of mRNA for extracellular matrix components. In addition, we show that the capacity for lactational differentiation correlates with conditions that favor the deposition of a continuous basement membrane, and argue that the interaction between specialized epithelial cells and stroma enables them to create their own microenvironment for accurate signal transduction and phenotypic function.  相似文献   

12.
Changes in epithelial substrate have been related to the cellular capacity for proliferation and to changes in cellular behavior. The effect of TGF beta 1 on the expression of the basement membrane genes, fibronectin, laminin B1, and collagen alpha 1 (IV), was examined. Northern analysis revealed that treatment of normal human epidermal keratinocytes with 100 pM TGF beta 1 increased the expression of each extracellular matrix (ECM) gene within 4 h of treatment. Maximal induction was reached within 24 h after treatment. The induction of ECM mRNA expression was dose dependent and was observed at doses as low as 1-3 pM TGF beta 1. Incremental doses of TGF beta 1 also increased cellular levels of fibronectin protein in undifferentiated keratinocytes and resulted in increased secretion of fibronectin. Squamous-differentiated cultures of keratinocytes expressed lower levels of the extracellular matrix RNAs than did undifferentiated cells. Treatment of these differentiated cells with TGF beta 1 induced the expression of fibronectin mRNA to levels seen in TGF beta-treated, undifferentiated keratinocytes but only marginally increased the expression of collagen alpha 1 (IV) and laminin B1 mRNA. The increased fibronectin mRNA expression in the differentiated keratinocytes was also reflected by increased accumulation of cellular and secreted fibronectin protein. The inclusion of cycloheximide in the protocol indicated that TGF beta induction of collagen alpha 1 (IV) mRNA was signaled by proteins already present in the cells but that TGF beta required the synthesis of a protein(s) to fully induce expression of fibronectin and laminin B1 mRNA. The differential regulation of these genes in differentiated cells may be important to TGF beta action in regulating reepithelialization.  相似文献   

13.
14.
15.
16.
17.
18.
We have used specific oligonucleotide probes to measure the effect of hydralazine on mRNA levels of the alpha and beta subunits of prolyl 4-hydroxylase (PH), a key post-translational modifying enzyme in collagen biosynthesis. Hydralazine exerts a paradoxical effect on collagen biosynthesis in cultured fibroblasts. Cells exposed to hydralazine synthesize substantially reduced amounts of collagen, which is severely deficient in hydroxyproline. Surprisingly, however, the level of prolyl hydroxylase activity assayed in extracts of treated cells is markedly increased, suggesting overproduction of the enzyme. Hybridization analysis indicated that in untreated cells the concentration of the alpha PH subunit mRNA was about 20-25% of the beta PH subunit mRNA concentration. Hydralazine treatment increased the mRNAs for both alpha and beta subunits of PH by three- to fourfold. A differential induction of these mRNAs was observed, however. The alpha subunit mRNA was maximally increased within 24 h, whereas the beta subunit mRNA was increased more slowly, reaching a maximum at 72 h. In contrast, the 5.8 and 4.8-kb mRNAs for pro alpha 1(I) collagen were virtually eliminated by 72 h. This study demonstrates that the increased prolyl hydroxylase activity is a direct result of hydralazine-mediated increases in steady state mRNA content for the alpha and beta subunits of this enzyme. Moreover, the earlier induction of alpha PH mRNA may provide the first evidence at the mRNA level that regulation of PH activity occurs mainly through regulation of the alpha subunit of PH. In addition, the decrease in collagen synthesis by hydralazine appears to result directly from suppression of both species of mRNA for pro alpha 1(I) collagen.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号