首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The distribution of some phosphatases (alkaline and acid phosphatase and ATPase) have been studied on 15 thick fresh frozen serial sections in the various regions and nuclei of the squirrel monkey brain. The alkaline phosphatase activity is concentrated in the blood vessels and the peripheral part of the neurons of some nuclei (e.g., nucleus supraoptic hypothalami) and the lining cells of choroid plexus. Acid phosphatase (AC) is a cellular enzyme and is concentrated in the large neurons of nuclei basalis Meynert, diagonalis band of Broca, magnocellular hypothalamic nuclei, corpus mammillaris, large sized neurons of the thalamus (e.g., nuclei paracentralis, ventralis lateralis, ventralis posterior thalami, magnocellular part of corpus geniculatum laterale), motor neurons of cranial nerve nuclei, large neurons of the reticular formation, giant pyramidal cells of cerebral cortex and the Purkinje cells of cerebellar cortex. The AC activity does not show as much variation in the different areas of the brain as the oxidative enzymes, which may mean that AC is more related to static maintenance metabolism of cells than to dynamic functional metabolism. The ATPase activity is more pronounced in the neuropil and the blood vessels compared to the neurons. In the perikarya, ATPase is concentrated close to the cell membrane, which may be significant in molecular transport across the membrane as well as in impulse conduction and synaptic transmission. Significant ATPase activity has been observed in the nucleus caudatus and putamen, magnocellular hypothalamic nuclei, nuclei parataenialis, paraventricularis, paracentralis, ventralis anterior thalami, habenular complex and cranial nerve nuclei.This work has been carried out with the aid of Grant No. 00165 from The Animal Resources Branch, National Institute of Health and a grant (NGR-11-001-016) from The National Aeronautics and Space Administration. Thanks are due to Mrs. M. J. Nimnicht and Miss M. E. Rogero for their technical help.  相似文献   

2.
Phenotypic expression of chondrocytes can be modulated in vitro by changing the culture technique and by agents such vitamins and growth factors. We studied the effects of ascorbic acid, retinoic acid (0.5 and 10 μM), and dihydrocytochalasin B (3, 10, 20 μM DHCB), separately or in combination (ascorbic acid + retinoic acid or ascorbic acid + DHCB), on the induction of maturation of fetal bovine epiphyseal chondrocytes grown for up to 4 weeks at high density in medium containing 10% fetal calf serum and the various agents. In the absence of any agent or with retinoic acid or DHCB alone, the metabolic activity of the cells remained very low after day 6, with no induction of type I or X collagen synthesis nor increase in alkaline phosphatase activity. Chondrocytes treated with fresh ascorbic acid showed active protein synthesis associated with expression of types I and X after 6 and 13 days, respectively. This maturation was not accompanied by obvious hypertrophy of the cells or high alkaline phosphatase activity. Addition of retinoic acid to the ascorbic acid‐treated cultures decreased the level of type II collagen synthesis and delayed the induction of types I and X collagen, which were present only after 30 days. A striking increase in alkaline phosphatase activity (15–20‐fold) was observed in the presence of both ascorbic acid and the highest dose of retinoic acid (10 μM). DHCB was also a potent inhibitor of the maturation induced by treatment with ascorbic acid, as the chondrocytes maintained their rounded shape and synthesized type II collagen without induction of type I or X collagen. The pattern of protein secretion was compared under all culture conditions by two‐dimensional gel electrophoresis. The different regulations of chondrocyte differentiation by ascorbic acid, retinoic acid, and DHCB were confirmed by the important qualitative and quantitative changes in the pattern of secreted proteins observed by two‐dimensional gel electrophoresis along the study. J. Cell. Biochem. 76:84–98, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

3.
Phenotypic expression of chondrocytes can be modulated in vitro by changing the culture technique and by agents such vitamins and growth factors. We studied the effects of ascorbic acid, retinoic acid (0.5 and 10 microM), and dihydrocytochalasin B (3, 10, 20 microM DHCB), separately or in combination (ascorbic acid + retinoic acid or ascorbic acid + DHCB), on the induction of maturation of fetal bovine epiphyseal chondrocytes grown for up to 4 weeks at high density in medium containing 10% fetal calf serum and the various agents. In the absence of any agent or with retinoic acid or DHCB alone, the metabolic activity of the cells remained very low after day 6, with no induction of type I or X collagen synthesis nor increase in alkaline phosphatase activity. Chondrocytes treated with fresh ascorbic acid showed active protein synthesis associated with expression of types I and X after 6 and 13 days, respectively. This maturation was not accompanied by obvious hypertrophy of the cells or high alkaline phosphatase activity. Addition of retinoic acid to the ascorbic acid-treated cultures decreased the level of type II collagen synthesis and delayed the induction of types I and X collagen, which were present only after 30 days. A striking increase in alkaline phosphatase activity (15-20-fold) was observed in the presence of both ascorbic acid and the highest dose of retinoic acid (10 microM). DHCB was also a potent inhibitor of the maturation induced by treatment with ascorbic acid, as the chondrocytes maintained their rounded shape and synthesized type II collagen without induction of type I or X collagen. The pattern of protein secretion was compared under all culture conditions by two-dimensional gel electrophoresis. The different regulations of chondrocyte differentiation by ascorbic acid, retinoic acid, and DHCB were confirmed by the important qualitative and quantitative changes in the pattern of secreted proteins observed by two-dimensional gel electrophoresis along the study.  相似文献   

4.
Prolactin (PRL)- and growth-hormone (GH)-containing perikarya and fibers independent of the anterior pituitary gland have been reported to exist in the central nervous system of several mammalian species. The specific distributions of PRL- or GH-like neurons in the avian forebrain and midbrain, however, have not been reported. The objective of the study was to identify GH- and PRL-containing neurons in the hypothalamus and a few extrahypothalamic areas of two avian species. Brain and peripheral blood samples were collected from laying and broody turkey hens and ring doves. Broody turkey hens and doves had significantly higher plasma PRL concentrations compared with laying hens. Coronal brain sections were prepared and immunostained using anti-turkey GH and anti-chicken synthetic PRL antibodies. In turkey hens, the most dense GH-immunoreactive (ir) perikarya and fibers were found in hippocampus (Hp), periventricular hypothalamic nucleus, paraventricular nucleus, inferior hypothalamic nucleus, infundibular hypothalamic nucleus, medial and lateral septal area, and external zone of the median eminence (ME). In the ring dove, a similar pattern of distribution of GH-ir neurons was noticed at the brain sites listed above except that GH-ir fibers and granules were found only in the internal zone of ME and not in the external zone. In both turkeys and doves, the most immunoreactive PRL-ir perikarya and fibers were found in the medial and lateral septal area, Hp (turkey only), and bed nucleus of the stria terminalis pars magnocellularis. There were no apparent differences in the staining pattern of GH- or PRL-ir neurons between the laying and broody states in either species. However, the presence of GH-ir- and PRL-ir perikarya and fibers in several hypothalamic nuclei indicates that GH and PRL may influence parental behavior, food intake, autonomic nervous system function, and/or reproduction.  相似文献   

5.
The cerebral ganglion and nerve tracts of Moniliformis dubius show intense, specific, green fluorescence that is also associated with the lateral and apical sensory bulbs. Radioenzymatic assays showed that high levels of dopamine were present but only small amounts of the catecholamines norepinephrine and epinephrine were identified. Incubations of the proboscis sac in dilute solutions of dopamine increased fluorescence while incubations in reserpine resulted in loss of fluorescence. Nonfluorogenic amine octopamine was also detected radioenzymatically. Neutral red vitally stained a number of cells in the cerebral ganglion and the nerve tracts extending from the ganglion. Electron microscopy showed that many neurons contained electron-dense vesicles. The close association of the fluorescing, amine-containing nerve tracts with the sensory bulbs suggests that they may play a functional role in sensory reception and transmission in M. dubius. This is the first report on the presence of biogenic amines in the Acanthocephala.  相似文献   

6.
During the process of endochondral bone formation, proliferating chondrocytes give rise to hypertrophic chondrocytes, which then deposit a mineralized matrix to form calcified cartilage. Chondrocyte hypertrophy and matrix mineralization are associated with expression of type X collagen and the induction of high levels of the bone/liver/kidney isozyme of alkaline phosphatase. To determine what role vitamin C plays in these processes, chondrocytes derived from the cephalic portion of 14-day chick embryo sternae were grown in the absence or presence of exogenous ascorbic acid. Control untreated cells displayed low levels of type X collagen and alkaline phosphatase activity throughout the culture period. However, cells grown in the presence of ascorbic acid produced increasing levels of alkaline phosphatase activity and type X collagen mRNA and protein. Both alkaline phosphatase activity and type X collagen mRNA levels began to increase within 24 h of ascorbate treatment; by 9 days, the levels of both alkaline phosphatase activity and type X collagen mRNA were 15-20-fold higher than in non-ascorbate-treated cells. Ascorbate treatment also increased calcium deposition in the cell layer and decreased the levels of types II and IX collagen mRNAs; these effects lagged significantly behind the elevation of alkaline phosphatase and type X collagen. Addition of beta-glycerophosphate to the medium increased calcium deposition in the presence of ascorbate but had no effect on levels of collagen mRNAs or alkaline phosphatase. The results suggest that vitamin C may play an important role in endochondral bone formation by modulating gene expression in hypertrophic chondrocytes.  相似文献   

7.
The adrenal components of C. mrigala are embedded in the pronephric cephalic kidney around the post cardinal vein. The cortical cells responded positively to the lipids, ascorbic acid, delta 5-3 beta-HSD, G-6-PD, MAO, acid and alkaline phosphatase tests. The presence of intense MAO activity may suggest the possible involvement of monoamines in the adrenocortical function. Localization of lipids and delta 5-3 beta-HSD show the sites of corticosteroid synthesis. In the chromaffin cells, MAO, acid and alkaline phosphatase activity was moderate whereas they gave a strong reaction to ascorbic acid test in comparison to the cortical cells. Noradrenaline (NA) and adrenaline (A) storing cells were differentiated adopting glutaraldehyde silver, dichromate and iodate techniques. NA and A storing cells are almost totally depleted of their contents after reserpine treatment. The histochemical response of the adrenal gland of this species is largely comparable to that of higher vertebrates.  相似文献   

8.
Summary The hypothalamus of Japanese quail, Coturnix coturnix japonica, has been studied by means of the peroxidase-antiperoxidase immunocytochemical method, with the use of antibodies to synthetic neurotensin (NT). A number of immunoreactive neuronal perikarya occur in the medial preoptic nucleus of the rostral hypothalamus and a few in the accessory part of paraventricular nucleus and dorsal portion of the infundibular nucleus. Some of them correspond to the parvocellular neurons previously identified tentatively as neurosecretory (Mikami et al. 1975, 1976). Large numbers of immunoreactive neuronal fibers are found in the preoptic area, which extend as a remarkable fiber tract from this area to the ventral septal area and to the subfornical organ. A few immunoreactive fibers also extend ventrocaudally to the infundibular nucleus and to the neural lobe.This investigation was supported by Scientific Research Grants No. 556196 and No. 576176 from the Ministry of Education of Japan to Professor Mikami and Mr. Yamada  相似文献   

9.
Mentha extract (ME; 1 g/kg body wt) given orally for three consecutive days prior to whole body irradiation (8 Gy) showed modulation of activity of serum phosphatases in albino mice. Values of acid phosphatase activities were significantly higher in untreated irradiated group throughout the experiment. Irradiated animals pretreated with ME showed significant decline in acid phosphatase activity as compared to untreated irradiated animals at all autopsy intervals and attained normalcy at day 5. A marked decrease in serum alkaline phosphatase activity was recorded in both irradiated groups. However, in ME pretreated irradiated group, values of alkaline phosphatase activity remained significantly higher than untreated irradiated animals at all intervals and attained normalcy from day 5 onwards.  相似文献   

10.
Summary In the diencephalon of two species of Gymnophiona (Amphibia) two neurosecretory nuclei were examined with histological (Alcian Blue, Aldehyde Fuchsin, Brookes Trichrome stain) and enzyme histochemical techniques (acid phosphatase, -naphthyl acetate esterase, acetylcholinesterase (AChE)). In the preoptic nucleus two categories of secretory neurons were distinguished: large and medium sized neurons. The perikarya of both cell types contain very little neurosecretory material. The Alcian Blue method stained the medium sized neurons faintly but selectively. The tractus praeopticohypophyseus is marked by the presence of Herring bodies, which, however, are relatively scarce. The neurohypophysis, in contrast, contains large amounts of neurosecretory material. Both cell types of the preoptic nucleus are characterized by their very strong AChE and -naphthylacetate esterase activity. The AChE also marks the tractus praeoptico-hypophyseus. In the large neurons acid phosphatase is present around the nucleus; in the medium sized neurons this enzyme is concentrated close to the origin of the axon. In the dorso-caudal hypothalamus a small group of neurons is stained with Alcian-Blue. These neurons, which also contain AChE, are located immediately under the ependyma which seems to be specialized in this region.The financial support of the Deutsche Forschungsgemeinschaft is gratefully acknowledged (We 380/5)  相似文献   

11.
Neurons synthesizing neurokinin B (NKB) and kisspeptin (KP) in the hypothalamic arcuate nucleus represent important upstream regulators of pulsatile gonadotropin-releasing hormone (GnRH) neurosecretion. In search of neuropeptides co-expressed in analogous neurons of the human infundibular nucleus (Inf), we have carried out immunohistochemical studies of the tachykinin peptide Substance P (SP) in autopsy samples from men (21-78 years) and postmenopausal (53-83 years) women. Significantly higher numbers of SP-immunoreactive (IR) neurons and darker labeling were observed in the Inf of postmenopausal women than in age-matched men. Triple-immunofluorescent studies localized SP immunoreactivity to considerable subsets of KP-IR and NKB-IR axons and perikarya in the infundibular region. In postmenopausal women, 25.1% of NKB-IR and 30.6% of KP-IR perikarya contained SP and 16.5% of all immunolabeled cell bodies were triple-labeled. Triple-, double- and single-labeled SP-IR axons innervated densely the portal capillaries of the infundibular stalk. In quadruple-labeled sections, these axons formed occasional contacts with GnRH-IR axons. Presence of SP in NKB and KP neurons increases the functional complexity of the putative pulse generator network. First, it is possible that SP modulates the effects of KP and NKB in axo-somatic and axo-dendritic afferents to GnRH neurons. Intrinsic SP may also affect the activity and/or neuropeptide release of NKB and KP neurons via autocrine/paracrine actions. In the infundibular stalk, SP may influence the KP and NKB secretory output via additional autocrine/paracrine mechanisms or regulate GnRH neurosecretion directly. Finally, possible co-release of SP with KP and NKB into the portal circulation could underlie further actions on adenohypophysial gonadotrophs.  相似文献   

12.
The probable presence of oxytocin in the hypothalamo-hypophysial system of two reptilian species, the snake Natrix maura and the turtle Mauremys caspica, was re-investigated. A high-pressure liquid chromatographic analysis of the turtle neural lobe revealed the existence of vasotocin, mesotocin, and a third compound co-eluting with oxytocin. Brains from both species were fixed by vascular perfusion with Bouin's fluid. Adjacent paraffin sections were immunostained using antisera against the following substances: (1) bovine oxytocin-neurophysin; (2) a mixture of bovine oxytocin-neurophysin and vasopressin-neurophysin; (3) dogfish neurophysins; (4) oxytocin; (5) arginine-vasotocin; (6) mesotocin; (7) somatostatin. Immunoreactivity against oxytocin was found in parvocellular neurons of the snake suprachiasmatic nucleus and cerebrospinal-fluid contacting neurons of the medial nucleus of the infundibular recess of both species, the latter immunoreactivity being much more conspicuous in the turtle. Numerous fibers containing immunoreactive oxytocin extended between the medial nucleus of the infundibular recess, and the internal region of the medium eminence and the neural lobe. The oxytocin-immunoreactivity in all locations was completely abolished by preabsorption of the anti-oxytocin serum with three different oxytocin preparations. None of the neurons of the suprachiasmatic and medial nucleus of the infundibular recess, including the oxytocin-immunoreactive elements, reacted with either the antineurophysin sera used, or the anti-vasotocin or anti-mesotocin antibodies. The possible existence of a reptilian oxytocin-neurophysin is discussed. The alternative that, in the reptilian hypothalamus, neurons synthesize a compound closely related to, but different from oxytocin is also considered.  相似文献   

13.
Summary The presence of prolactin (PRL)-like material is demonstrated in the brain of rats with the aid of anti-ovine PRL (oPRL) IgG as primary antibody in the unlabeled antibody-enzyme method. Immunoreactive deposits are visualized as an intraneuronal constituent with a widespread distribution in the hypothalamus and neural lobe of the pituitary. Dense networks of reactive nerve terminals derived from two prominent fibre tracts, a ventral (VHT) and a dorsal hypothalamo-neurohypophysial tract (DHT) are seen. The VHT is confined to the median eminence and pars oralis tuberis, the DHT to the pars caudalis tuberis. Both fibre tracts pass through the infundibular stalk into the neural lobe. The origin of the immunoreactive nerve terminals can be elucidated only to some extent. The VHT gives off beaded fibres entering the ependymal and glandular layer of the median eminence. Immunoreactive perikarya are observed in the supraoptic nucleus, the paraventricular nucleus, the anterior hypothalamic nucleus, the anterior commissural nucleus, the preoptic nucleus and the interstitial nucleus of the stria terminalis. A few of the immunoreactive perikarya are observed in close connection with brain vessels and the ependymal cells of the third ventricle. The results indicate that the anti-oPRL has a unique region specificity implying that only a segment of the mammalian PRL molecule is present in these nuclei of the brain. Fragments of PRL may function as neuromodulators or neurotransmitters in the rat brain.We are indebted to Dr. Mogens Hammer, Rigshospitalet, Copenhagen for the gift of Arg-VP and anti-VP, and to NIAMDD for the gift of ovine PRL, ratPRL, anti-rPRL, anti-hPRL and bovineSTH  相似文献   

14.
Escherichia coli alkaline phosphatase (EC 3.1.3.1) is reversibly inhibited by a variety of phenylarsonic acids, including some N-haloacetylated derivatives. The inhibition is of the competitive type, and Ki values are reported. The action on the enzyme of one of the arsonate inhibitors, the azo dye, 4-(4-aminophenylazo)-phenylarsonic acid was studied in detail, using spectrophotometric and kinetic methods. The azo dye binds more strongly to E. coli alkaline phosphatase than do the other arsonates. Spectrophotometric titration indicates the presence of a single, strong dye-binding site on the enzyme dimer molecule in the concentration range covered. In 0.1 M Tris - HCl buffer pH 8.0, 25 degrees C K diss for the dye - enzyme complex is 1.50 - 10(-5) M as determined by spectrophotometric titration. This value is in good agreement with the Ki = 1.30 - 10(-5) M obtained from kinetic measurements. The dye can be displaced from alkaline phosphatase by phosphate and competitive inhibitor 2-aminoethyl phosphonate. These results indicate that the dye binds with its arsonic acid group to the anion binding site of the active site of the enzyme. The binding of the dye to the native enzyme is associated with a red shift in the visible spectrum of the dye. It seems that the aromatic portion of the dye interacts with a hydrophobic region close to the anion binding site. The spectrum of the dye is not changed in the presence of the apoenzyme. When zinc is added to an apoenzyme-dye solution, the spectral changes of the dye depend on both the ratio of zinc per apoenzyme and the pH. The presence of Mg2+ had no effect on the observed phenomenon.  相似文献   

15.
Neurotensin (NT) injected intracerebroventricularly in rat increases dopamine (DA) turnover in the corpus striatum and nucleus accumbens. Significant increases in 3,4-dihydroxyphenylacetic acid (DOPAC) levels occurred within 15 minutes after injection with peak levels at 60 minutes. The effect on NT on DOPAC and homovanillic acid (HVA) accumulation was dose-dependent at 3–100 μg. NT, like haloperidol, stimulated 3,4-dihydroxyphenylalanine (DOPA) accumulation in striatal neurons, in the presence of DOPA decarboxylase inhibitor, after injection of gamma-butyrolactone (GBL). NT had a similar stimulatory effect on DOPA levels in the accumbens while haloperidol (0.25 mg·kg?1) had no significant effect in this brain region. NT did not block the inhibitory effect of apomorphine on DOPA accumulation in both the striatum and accumbens, while haloperidol inhibited apomorphine effect in both regions. NT also failed to displace 3H-spiperone from DA receptors and the presence of NT in the binding assay did not alter the ability of DA to displace 3H-spiperone in either brain region. These experiments demonstrate that NT increases DA turnover in both the nigrostriatal and mesolimbic pathways.  相似文献   

16.
Summary Nerve fibres and perikarya containing LH-RH-like material were identified immunohistochemically in the diencephalon of the domestic hen using the peroxidase-anti-peroxidase technique. Perikarya were thinly scattered in bilateral bands close to the third ventricle extending from the nucleus praeopticus paraventricularis magnocellularis, passing in front of the anterior commissure into the septal area. In this latter area, the perikarya tended to spread out laterally. A few perikarya were seen in the anterior portion of the nucleus paraventricularis magnocellularis but were not found in the infundibular nuclear complex. Fibre tracts were seen running dorso-ventrally in the preoptic area apparently associated with the lamina terminalis. Fibres, possibly nerve terminals, were found in the lamina terminalis and in the external layers of the anterior and posterior divisions of the median eminence. A large number of fibres was seen distributed throughout the infundibular nuclear complex; scattered fibres were found close to the third ventricle in the anterior hypothalamus. Extrahypothalamic fibres were also observed to project from the septal area into other parts of the telencephalon.The authors thank Mrs G. Connell for technical assistance, Mr R.K. Field for help with photography, Professor A. Arimura and Dr. H.M. Fraser for anti-LH-RH serum and Hoechst Pharmaceuticals for the gift of synthetic LH-RH  相似文献   

17.
In man, discrete neurons of the infundibular (arcuate) nucleus contain compounds that can be stained with anti-endorphin (alpha and beta), anti-ACTH, anti-MSH (alpha and beta) and anti-beta-LPH immune sera (I.S.). In the fetus, certain neurons stain with anti-beta-endorphin or anti((17--39)ACTH starting from the 11th week of fetal life. At the ultrastructural level, these neurons contain elementary granules that are immunoreactive with anti-beta-endorphin. In the adult, neurons immunoreactive with anti-beta-endorphin are found in the infundibular nucleus. Their axonal fibers terminate around blood vessels in the neurovascular zone and in the pituitary stalk, or establish contacts with non-immunoreactive perikarya of the infundibular nucleus. These neurons can be stained with anti(17--39)ACTH and anti-beta-endorphin I.S. The most reactive are also stained moderately with anti-alpha-MSH, anti-beta-MSH, anti-beta-LPH, anti-alpha-endorphin, or anti(1--24)ACTH I.S. These results indicate that, in man, compound(s) identical with or immunologically related to endorphins, beta-LPH, ACTH and MSH are secreted by certain hypothalamic neurons. These agents probably originate from a common precursor molecula similar to the so-called pro-opiocortin.  相似文献   

18.
The purpose of the study was to localise neuropeptide Y (NPY) immunoreactive (ir) neurons in the hypothalamus during two phases of the oestrous cycle in the ewe. Hypothalamic tissue was collected from Polish Merino ewes (n=8) in the follicular (15th day) and preovulatory (17th day) phases of the oestrous cycle. NPY-ir neurons were detected in the hypothalamus using immuohistochemistry followed by image analysis; positive staining was expressed as the percentage of stained area and optical density. Two populations of the NPY-positive neurons were detected and evaluated in the infundibular and periventricular nuclei of the hypothalamus. The population of NPY-ir neurons located in the infundibular nucleus exhibited a prominent expression of NPY immunoreactivity in the perikarya and fibres only during the preovulatory phase. Both, percent area and the optical density of NPY immunostaining measured in this area were higher (P < 0.01) in the preovulatory than in the follicular phase. Another population of NPY-ir neurons was localised in the periventricular nucleus and did not show any changes during the two phases of the cycle. The present study suggests that NPY-ir neurons present in the infundibular nucleus can play a role in the preovulatory GnRH discharge from the median eminence.  相似文献   

19.
We investigated the photoperiodic response of serotonin- and galanin (GA)- immunoreactive (ir) cells in the paraventricular organ (PVO) and infundibular nucleus (IF) of the Japanese quail and the interaction of these cells with gonadotropin-releasing hormone (GnRH)-ir neurons in the hypothalamus. Serotonin-ir cells were located in series from the PVO to the IF, and were connected with each other. The number of serotonin-ir cells differed significantly between light and dark phases on the short days (SD), but did not differ between light and dark phases on long days (LD). GA-ir cells were also found in the PVO and IF. The number of GA-ir cells under SD conditions was significantly greater than under LD conditions but did not change diurnally. Both serotonin-ir and GA-ir fibers ran along the GnRH-ir cells in the nucleus commissurae pallii. Serotonin-ir and GA-ir fibers were connected with the GnRH-ir fibers in the external layer of the median eminence (ME). We confirmed that GA-ir fibers were closely associated with serotonin-ir neurons in the PVO and IF. GA-ir neurons have at least 2 routes of regulating GnRH neurons directly, and indirectly via the serotonin-ir cells in the PVO and IF.  相似文献   

20.
Administration of monosodium glutamate (MSG) during the neonatal period in rats produced differential effects on the contents of various neuropeptides in the hypothalamus: beta-endorphin (beta-E) level was reduced by 70% while substance P (SP), neurotensin (NT) and Met5-enkephalin (ME) levels were not significantly changed (ME content of male rats was slightly reduced). The contents of ME, SP and NT in striatum and hippocampus were also unaffected by the same treatment. Male rats contain higher pituitary content of beta-endorphin-like immunoreactivity (beta-ELI) than female rats. MSG treatment reduced the pituitary content of beta-ELI and abolished the sex difference in beta-ELI level seen in the control rats. MSG treatment in the neonates by eliminating beta-E neurons while sparing ME neurons in the brain may be a useful tool for studying the different functions of these two separate opioid peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号