首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
为研究水产养殖对湖泊生态系统的影响,于2015年7月至9月对长江中游23个湖泊的浮游植物群落及生物多样性情况进行了调查,所研究的湖泊包括以下4组:水库组(A组)、禁养组(B组)、低密度养殖组(C组)、高密度养殖组(D组)。结果显示, 4组湖泊的优势类群间存在一定差异。A组优势种有假鱼腥藻(Pseudanabaena,Y=0.642, Y为优势度)、浮鞘丝藻(Planktolyngbya, Y=0.064), B组优势种有平裂藻(Merismopedia, Y=0.428)、浮鞘丝藻(Planktolyngbya, Y=0.118)、假鱼腥藻(Pseudanabaena, Y=0.133)、栅藻(Scenedesmus, Y=0.066), C组优势种为假鱼腥藻(Pseudanabaen, Y=0.395)、平裂藻(Merismopedia, Y=0.097)、浮鞘丝藻(Planktolyngbya,Y=0.122), D组的优势种为平裂藻(Merismopedia, Y=0.308)、微囊藻(Microcystis, Y=0.118)、假鱼腥藻(Pseudanabaena, Y=0.077)。A组浮游植物丰度显著低于B组、C组及D组(P0.05)。各组间浮游植物群落的Shannon-Wiener多样性指数、Margalef丰富度指数及Pielou均匀度指数均不存在明显差异。研究表明鱼类养殖对湖泊浮游植物的丰度及优势类群会产生影响,对湖泊生态系统的管理具有一定的参考意义。  相似文献   

2.
鹤地水库浮游植物群落的结构与动态   总被引:4,自引:0,他引:4  
鹤地水库位于雷州半岛北部(21°42'~22°22'N,109°54'~110°25'E),是一座中营养化的大型水库.为了研究其浮游植物群落的结构与变化特点,在水库设置5个采样点,并于2003年2、7、9、12月对其采样.鹤地水库浮游植物生物量变化为O.156~2.548 mg L~(-1),主要由蓝藻和硅藻组成.5个采样点的浮游植物生物量具有明显的季节变化,且变化趋势相同,即丰水期的生物量高于枯水期,主要是由于丰水期水温较高以及入库河水带入的营养盐.5个采样点的浮游植物生物量从主要入库河流至大坝区呈下降趋势,与磷浓度的降低直接相关.浮游植物优势种主要以热带代表性种类为主,且有明显的季节变化,枯水期主要为硅藻的根管藻(Rhizosolenia sp.)、小环藻(Cyclotella sp.)、颗粒直链藻(Melosira granulata)以及模糊直链藻(Melosira ambigua)等.丰水期为蓝藻的拟柱孢藻(Cylindrospermopsis raciborskii)、湖泊假鱼腥藻(Pseudanabaena limnetica)等,浮游植物优势种类的变化主要受磷浓度的影响.浮游植物前8个优势种的生物量占浮游植物群落生物量的850%~92%,显著低于温带地区浮游植物群落结构稳定的湖泊.  相似文献   

3.
贵州百花湖夏季浮游植物昼夜垂直分布特征   总被引:5,自引:1,他引:4  
黄志敏  陈椽  刘之威  龙胜兴 《生态学报》2014,34(19):5389-5397
为了探讨浮游植物在水体中的昼夜垂直分布格局,于2012年7月31日至8月1日对百花湖(水库)浮游植物进行昼夜24 h定点分层研究。研究结果表明:蓝藻、绿藻、硅藻种类数在水体中具有明显的分层现象,蓝藻种类数在0.5—2 m居多,绿藻种类数在0.5—6 m明显多于7—14 m,硅藻种类数主要分布在6 m及以深的水层中。湖泊假鱼腥藻(Pseudanabaena limnetica)为绝对优势种,相对丰度为82.69%。8:00时湖泊假鱼腥藻在2—3 m处聚集程度最高,10:00时聚集程度最高的水层上升至0.5 m,10:00—12:00湖泊假鱼腥藻的细胞丰度由0.5 m向2 m扩增,12:00时在2 m处达到全天峰值,此时0.5 m处的细胞丰度是除6:00外的最小值,12:00—14:00湖泊假鱼腥藻的细胞丰度由2 m向0.5 m扩增,16:00时又大量聚集于1 m处,说明湖泊假鱼腥藻在白天具有明显的垂直迁移现象;湖泊假鱼腥藻丰度的MI指数白天在1.45—2.07之间,夜间在1.40—1.46之间,变化趋势与时间深度等值图结果相符,说明湖泊假鱼腥藻在水体中昼夜均呈聚集分布,且白天的聚集程度及变化幅度大于夜间;百花湖浮游植物总丰度的昼夜垂直分布格局与湖泊假鱼腥藻一致;水体中浮游植物总丰度和湖泊假鱼腥藻丰度夜间低于白天。光照的昼夜交替和水柱温差的昼夜变化是影响浮游植物总丰度和湖泊假鱼腥藻垂直分布格局昼夜变化的重要环境因素。  相似文献   

4.
于2013 年5 月至2014 年4 月对深圳石岩水库进行采样, 研究了深圳石岩水库浮游植物群落组成、时空动态及其主要的环境影响因素, 以期为该水库水质的保障和改善提供科学依据。石岩水库全年共检测到浮游植物7 门90属, 以绿藻门(41.1%)、硅藻门(30.0%)和蓝藻门(20.0%)为主。浮游植物的种类在9 月份最丰富, 有61 种, 8 月份最少, 仅有18 种。各采样区的浮游植物丰度, 在6 月份达到最大值, 为1.76×108 cells·L–1, 在10 月份出现最低值, 为2.74×106 cells·L–1。绿藻、硅藻和蓝藻的丰度之和在全年所占比例都较高, 变化范围为96.74%-100%, 以蓝藻居多, 占51.55%-92.23%,其中, 绿藻门的优势属为十字藻属(Crucigenia)、栅藻属(Scenedesmus)、小球藻属(Chlorella); 硅藻门的优势属为直链藻属(Melosira)、小环藻属(Cyclotella); 蓝藻门的优势属为假鱼腥藻属(Pseudanabaena)。冗余分析(Redundancy analysis,RDA)表明: 全部样品分布在轴1 与轴2 构成的4 个象限内, 轴2 左侧与冬(春秋)季对应, 轴2 右侧与夏季对应; 绝大多数藻类分布在冬(春秋)季对应的象限内, 少数藻类包括硅藻门的卵形藻属(Cocconeis)、蓝藻门的平裂藻属(Merismopedia)、尖头藻属(Raphidiopsis)和鞘丝藻属(Lyngbya)以及绿藻门的衣藻属(Chlamydomonas)分布在夏季所对应的象限内; 研究结果表明影响石岩水库浮游植物群落结构动态的主要驱动因子是水温(Temperature, TEMP)、总有机碳 (Total Organic Carbon, TOC)、硝酸盐氮(NO3-N)和总氮(Total Nitrogen, TN)。  相似文献   

5.
于2011年12月—2012年11月,每月一次测定新开挖景观河道——上海临港B港河道的浮游植物和水质指标,对该河道浮游植物群落结构及其与环境因子之间的关系进行了研究。结果表明:鉴定出浮游植物7门223种,绿藻门种类最多,其次为蓝藻门和硅藻门,浮游植物群落数量变幅为7.52×106~212×106cells·L-1,平均数量为66.27×106cells·L-1,丰水期的种类数高于枯水期,浮游植物数量则相反,各季度优势种变化不大,主要以蓝藻门的平裂藻属(Merismopedia spp.)为主;典范对应分析排序表明,浮游植物在4个象限中分布均匀,反映河道水系处于四季分明的亚热带气候特点;主成分分析和典范对应分析排序表明,对河道浮游植物群落动态变化影响较大的环境因子是盐度、营养盐(TN和TP);小形色球藻(Chroococcus minor)、银灰平裂藻(Merismopedia glauca)、膨胀四角藻(Tetraedron tumidulum)和针杆藻(Synedra sp.)可作为盐度的指示种;短线脆杆藻(Fragilaria brevistriata)、尖针杆藻(Synedra acus)、新月菱形藻(Ntizschia closterium)和束缚色球藻(Chroococcus tenax)对指示有机污染有潜在价值。  相似文献   

6.
为了解P限制水体中浮游植物群落对N、P营养盐的响应,通过添加N、P营养盐设置N/P梯度,对广东省流溪河水库中的浮游植物群落进行了研究。结果表明,添加N、P显著促进浮游植物的生长,浮游植物群落受P盐的影响比N盐显著;藻类的种属特异性导致浮游植物群落对氮磷营养盐的响应不一致,浮游植物总丰度与N/P比值不相关,其中隐球藻(Aphanocapsa sp.)、拟柱胞藻(Cylindrospermopsis raciborskii)和假鱼腥藻(Pseudanabaena sp.)等蓝藻适合在高N高P条件下生长,双对栅藻(Scenedesmus bijuga)等绿藻优势种偏好中N高P环境,而曲壳藻(Achnanthes sp.)、小环藻(Cyclotella sp.)等硅藻在低N低P的环境下占据优势;P浓度为0.8~2.0μmol/L时存在诱导浮游植物碱性磷酸酶活性的阈值,当P浓度大于2.0μmol/L时则抑制酶活性; P浓度为2.0μmol/L可能是浮游植物维持生长的最适浓度,浮游植物N/P维持动态平衡;藻细胞N/P、C/P与水体P浓度、N/P呈显著正相关,而藻细胞C/N受N影响更明显(P0.05)。这为热带亚热带水库的水质管理提供了理论参考。  相似文献   

7.
于2005年1-6月,对南亚热带调水水库—大镜山水库的水文、营养盐(N、P)和浮游植物进行了调查研究。共检测到浮游植物76种;浮游植物总的细胞数量在4.925×106-63.65×106cellsL-1之间,浮游植物的总生物量在1.632-20.420mgL-1之间。假鱼腥藻(Pseudanabaena sp.)是主要优势藻,但是早春(1-3月)假鱼腥藻和肘状针杆藻(Synedraulna)共同成为优势藻。浮游植物细胞的丰度晚春(4-6月)比早春的要高,但是生物量却比早春的低。在水文过程与其它水库有一定差别的典型调水水库,水温是引起浮游植物种类组成变化的主要原因。浮游植物组成与动态是受入库营养盐和水动力学的变化所影响的。  相似文献   

8.
陶敏  岳兴建  岳珊  代丽娜  韩文文  王永明  刘果  李斌 《生态学报》2021,41(23):9457-9469
为了解四川丘陵区中小型水库浮游植物群落结构周年变化,掌握其演替规律并预测其发展方向,于2016年-2017年分季节对该地区10个典型水库进行了周年研究。结果显示:共检出浮游植物9门104属188种,其中优势种4门16属16种,以湖泊假鱼腥藻(Pseudanabaena linmnetica)优势度指数为最高;蓝藻密度在各季节、各水库中均占据优势,尤其是夏季。优势种生态位宽度和生态位重叠度在存在明显的季节差异性,并受到水温、营养条件等环境因子的显著影响;优势种可分为3个类别,竞争力相对较强的7个种中有5种蓝藻;全年发展性最强的种类也多为蓝藻,特别是湖泊假鱼腥藻等具有产毒潜力的种类,其优势度存在进一步扩大的风险。种间联结性检验结果显示,群落种间大致表现出净的正联结,优势种种对间正负关联比大于1,该类水库群落结构较为稳定且存在正向演替的趋势,可能会导致夏季间断性产毒蓝藻水华的风险。研究结果可为四川丘陵区中小型水库浮游植物群落演替研究以及蓝藻水华预警提供基础资料。  相似文献   

9.
陶粒浮床对草鱼养殖池塘水质和浮游植物的影响   总被引:2,自引:0,他引:2  
为了探讨陶粒浮床对草鱼养殖池塘浮游植物群落结构的影响, 将6个池塘随机分为两组, 分别为浮床组和对照组, 2013年510月对养殖池塘的藻类群落结构和水质因子进行定期采样分析。结果表明: 浮床组池塘水体透明度显著高于对照组(P0.05), 养殖后期, 浮床组主要营养盐指标显著低于对照组(P0.05), 微生物总数显著高于对照组(P0.05)。水质理化指标波动范围小, 系统稳定性较强。试验期间共检出浮游藻类8门111属179种, 其中绿藻93种, 蓝藻25种, 硅藻23种, 裸藻17种, 黄藻6种, 甲藻5种, 金藻5种, 隐藻5种。在养殖中后期, 陶粒浮床对藻类的种类组成有显著影响, 藻类种数明显高于对照组, 浮床组和对照组浮游植物数量范围分别为101. 95106614.95 106 ind./L和151.43106612.60 106 ind./L, 生物量范围分别为90.79402.85 mg/L和116.33831.55 mg/L, 到养殖中后期(8月份以后), 对照组浮游植物的生物量显著高于浮床组(P0.05)。绿藻门和蓝藻门的贡献率一直占总密度的90%以上。浮游植物群落呈明显的季节变化, 绿藻门呈先降低后升高的趋势, 蓝藻门相反。试验初期浮游植物的优势种为栅藻; 在试验开始30d后, 浮床组栅藻继续保持优势藻的地位, 对照组的优势种则变为平裂藻和微囊藻; 78月份, 浮床组和对照组的优势种均为蓝藻门的平裂藻, 9月份后优势藻逐渐由栅藻和绿球藻取代。浮床组和对照组藻类多样性指数无显著差异, 物种丰富度均呈逐渐下降的趋势, 范围为3.165.59, Shannon指数和Simpson指数均呈先降低后升高的趋势, 范围分别为1.502.46和0.540.87。陶粒浮床对改善池塘水质、丰富藻类种类组成、降低过高生物量和微囊藻爆发的风险有一定作用。    相似文献   

10.
淀山湖浮游植物群落特征及其演替规律   总被引:12,自引:0,他引:12  
为探明淀山湖浮游植物群落结构演变与富营养化之间的关系,于2004-2006年对上海市最大天然淡水湖泊淀山湖的浮游植物进行逐月采样调查,分析其群落结构特征.共采集到淀山湖浮游植物84属205种,主要由绿藻(种类数占50%)、硅藻(20%)、蓝藻(13%)、裸藻(13%)等组成.相邻两月之间种类相似性系数呈现冬春季高、夏秋季低的趋势:优势种为银灰平裂藻(Merismopedia glauca)、小席藻(Phormidium tenus)、铜绿微囊藻(Microcystis aeruginosa)、具缘微囊藻(M.marginata)、湖泊鞘丝藻(Lyngbya limnetica)、微小色球藻(Chroococcus minutus),颗粒直链藻最窄变种(Melosira granulata var.angustissima )、啮蚀隐藻(Cryptomonas erosa)、小球藻(Chlorella vulgate)和四尾栅藻(Scenedesmus quadricauda)等.浮游植物群落细胞数量主要由蓝藻(42.73%)、绿藻(37.75%)、硅藻(12.67%)和隐藻(6.06%)组成;生物量主要由硅藻(36.75%)、蓝藻(16.78%)、绿藻(16.36%)和隐藻03.53%)等组成.淀山湖浮游植物群落结构季节演替模式不同于PEG(Plankton Ecology Group)模型,其中蓝藻从春末开始大量出现,夏季大量繁殖,一直延续到秋初.综合文献资料看出,淀山湖浮游植物群落已从1959年的硅藻一金藻型、1987-1988年的隐藻-硅藻型演变为2004-2006年的蓝藻-绿藻型;数量由1959年的103 ind./L上升至2004-2006年的1.11×107 cells/L.演替的总体趋势表现为:贫中营养型的金藻、甲藻比例下降,富营养型的蓝藻、隐藻和微型绿藻增加.浮游植物数量和群落结构的演变指示了淀山湖水体的富营养化进程.  相似文献   

11.
The influence of nutrient levels, fish density and charophytes on the phytoplankton ecology of a shallow Mediterranean lake was studied by means of an in situ mesocosm experiment. Different levels of nutrients and fish were added over the course of an eight‐week experiment, during which charophytes were removed towards the end. After submerged plants were removed, phytoplankton biomass increased significantly in all the mesocosms, with a reduction of algal diversity and species richness and dominance of cyanobacteria. Cyanobacteria recruited from the sediment played an important role in sustaining planktonic populations of the dominant species. Oscillatorial species (Pseudanabaena galeata, Planktolyngbya limnetica) dominated at higher nutrient levels (0.5–1 mg L–1 P and 5–10 mg L–1 N) and chroococcal cyanobacteria (Merismopedia tenuissima) at lower nutrient levels. Density of planktivorous fish had little effect on the algal recruitment from the sediment and phytoplankton biomass and diversity. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
浮游植物是湿地生态系统的重要组成成分,其数量及群落结构变化会对湿地生态系统的结构和功能产生重要影响。为了解海珠国家湿地公园浮游植物群落结构及时空动态变化特征,于2017年冬、2018年夏两季分别进行了调查。结果表明:海珠国家湿地公园共检到浮游植物171种,隶属7门64属,其中绿藻门、硅藻门和蓝藻门种类分别占总种类的44%、26%和13%;广州平裂藻(Merismopedia cantonensis)和细小平裂藻(Merismopedia minima)在两季均为优势种,冬季啮蚀隐藻(Cryptomonas erosa)也较多;浮游植物群落结构、丰度与生物多样性指数具有明显季节变化,冬季硅藻和绿藻占优,分别占藻类总丰度的32%和29%;夏季蓝藻占绝对优势,占68%;夏季浮游植物平均丰度达(25.58±18.47)×106cells·L-1,约为冬季的3倍; Shannon物种多样性指数和Pielou均匀度指数冬季分别为4.38和0.77,夏季分别为2.92和0.51;从空间上看,海珠湖浮游植物种类、多样性指数均较低,而丰度较高;塘涌和西江涌硅藻...  相似文献   

13.
福建九龙江北溪浮游植物群落分布特征及其影响因子   总被引:4,自引:0,他引:4  
分别于2011年枯水期(2月)、丰水期(5月)和平水期(10月),系统调查研究了福建九龙江北溪浮游植物群落组成、丰度的分布特征及其与环境因子的关系.共鉴定浮游植物107种,隶属于7门64属.不同水文期浮游植物主要优势种类不同,枯水期为马索隐藻和梅尼小环藻,丰水期为四尾栅藻和四角十字藻,平水期则演替为微小平裂藻.不同水文期浮游植物丰度变化明显,其平均值依次为枯水期(154.77×104 cells·L-1)>平水期(76.40×104 cells·L-1)>丰水期(45.40×104 cells·L-1).相关分析表明, 枯水期和平水期浮游植物丰度与铵态氮(NH4+-N)呈显著正相关,丰水期浮游植物丰度与温度呈极显著正相关.典范对应分析(CCA)表明,水体温度是影响该水域浮游植物分布格局的重要因子,溶解态活性磷浓度也对浮游植物的分布有较大的影响.CCA排序图较好显示了浮游植物物种分布和环境因子之间的关系.  相似文献   

14.
鲢对藻类摄食效应的室内模拟研究   总被引:1,自引:0,他引:1  
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2015,39(5):940-947
为研究鲢(Hypophthalmichthys molitrix)对藻类的摄食作用, 采用小环藻(Cyclotella)、小球藻(Chlorella)、微囊藻(Microcystis)和东湖原水开展了小规格鱼种的养殖试验, 对鲢摄食和排泄物进行了研究。结果显示: 在3 种纯培养藻种投喂下鲢存活率从高到低依次是小环藻组 小球藻组 微囊藻组;相应地, 鲢对藻的平均摄食率排序也是小环藻组 小球藻组 微囊藻组。在显微镜下观察粪便发现大部分小环藻为空壳, 一部分小球藻外部形态结构不完整, 外部形态完整的小球藻则色泽暗淡、内部结构紊乱, 微囊藻没有明显变化;3 种藻类细胞的受损率分别为20.04%、7.13%和1.97%。叶绿素荧光活性显示, 粪便中小环藻基本失去光合活性, 小球藻活性极显著降低(P0.01), 微囊藻活性明显降低(P0.05), 东湖原水处理组光合活性较对照极显著降低(P0.01)。对东湖水饲喂试验组排泄物的检测发现, 浮鞘丝藻Planktolyngya、鱼腥藻Anabeana(有破损)、假鱼腥藻Pseudoanabaena 和颤藻Oscillatoria 细胞受损严重;空星藻Coelastrum 和盘星藻Pediastrum 细胞部分破损;针杆藻Synedra、小环藻、桥弯藻Cymbella 和舟形藻Navicula 多为空壳。鱼粪中平裂藻Merismopedia、微囊藻、浮鞘丝藻、鱼腥藻、颤藻、卵囊藻Oocystis、栅藻Scenedesmus 和衣藻Chlamydomonas 在重新培养后恢复了生长。本研究显示硅藻尤其是小环藻、针杆藻和舟形藻对鲢摄食最敏感;栅藻、卵囊藻和平裂藻对摄食压力不敏感。研究表明鲢捕食对藻类群落结构有明显的改变效应, 利用鲢的滤食进行藻类群落调节和水华防控具有可行性。    相似文献   

15.
报道了2008—2009年4季度海南西部近岸浮游植物群落的周年动态并探讨其主要关联因素。165份样品经鉴定共有浮游植物4门74属155种(含5变型和2变种),周年平均丰度为(6.36±4.75)×103cells/L。硅藻在物种组成和丰度上均占绝对优势,其次为甲藻,蓝藻(束毛藻)在7月增殖。主要优势种为菱形海线藻(Thalassionema nitzschioides)、奇异棍形藻(Bacillaria paradoxa)、具槽帕拉藻(Paralia sulcata)、旋链角毛藻(Chaetoceros curvisetus)、笔尖根管藻(Rhizosolenia styliformis)、束毛藻(Trichodesmium spp.)、海洋原甲藻(Prorocentrum micans)等。物种组成的季节差异较大,10月浮游植物种类贫乏,1月次之,4月、7月最丰富。丰度10月最高,季节差异并不明显。束毛藻在4月、7月呈斑块状群聚分布。浮游植物周年平均丰度并不高(<1.0×104cells/L)。不同季节优势种有明显的交错和变化,菱形海线藻、奇异棍形藻、具槽帕拉藻为全年优势种。浮游植物物种多样性指数和均匀度都表现出较高的值,均匀度与多样性指数的季节变化特点基本一致,群落多样性高的季节物种均匀度也好。物种多样性指数指示调查区水体遭受污染程度低,水质状况优。调查区各季节的浮游植物丰度与温度之间无显著的相关关系,1月丰度与盐度则呈密切负相关关系。10月浮游植物丰度与无机氮(DIN)呈密切的正相关关系。7月浮游植物丰度与活性磷酸盐(PO4-P)呈密切的负相关关系。浮游动物对浮游植物的摄食压力直接影响到后者的丰度变动,并伴随着海区生态系统的相关复杂现象及生物学过程的作用。  相似文献   

16.
Due to the intensive mixing polymictic lakes should be homogenous. However, morphometric diversity and high water dynamics contribute to the differentiation of many parameters in various areas of the lakes. This study analyzes both phytoplankton and zooplankton to assess differences in water quality along the north–south axis of the longest lake in Poland. New phytoplankton indicators were applied for determining the lake's ecological status: the Q index based on functional groups and the PMPL (Phytoplankton Metric for Polish Lakes) index based on phytoplankton biomass. TSIROT index (Rotifer Trophic State Index), which comprises the percentage of species indicating a high trophic state in the indicatory group and the percentage of bacteriovorus in the Rotifera population, was used for zooplankton analysis.TP content was different at different sites – we observed its gradual increase from the south to the north. Spatial variation of phosphorus did not considerably affect plankton diversity. The phytoplankton was dominated by Oscillatoriales, typical of shallow, well-mixed eutrophic lakes. The ecological status of the lake based on the EQR (Ecological Quality Ratio) was poor or moderate. The zooplankton was dominated by rotifers (at almost all sites), which indicates a eutrophic state of the lake. The values of phytoplankton indices at the studied sites did not differ considerably; the differences resulted more from local conditions such as the contaminant inflow and the macrophyte development than water dynamics.We have demonstrated that in the lake dominated by filamentous Cyanobacteria the ecological status should be determined according to the PMPL index or other indices dependent on the dominant Cyanobacteria species. Since the Q index does not include the functional group S1, the results can lead to the false conclusion that water quality improves with an increased amount of phytoplankton. The high abundance of Cyanobacteria in the lake may have contributed to the poor growth of rotifers.  相似文献   

17.
采用2013—2014年四季度月在金门岛北部海域获取的浮游植物及环境因子监测数据, 分析该区浮游植物的群落结构和季节变化及其与温度、盐度、悬浮物、营养盐、叶绿素等的关系, 初步探讨涉海工程建设对浮游植物群落的潜在影响。结果显示, 鉴定出的浮游植物隶属3门43属82种(不含未定种), 群落构成以硅藻为主, 其次是甲藻, 蓝藻仅1种。物种组成的季节差异较大, 3月物种贫乏, 1月次之, 7月和11月最丰富。四季丰度平均为47.09×103 cells/L, 1月丰度最高, 7月次之, 11月最低, 3月高于11月少许。四季优势种均为硅藻, 13个优势种分别为柔弱几内亚藻(Guinardia delicatula)、短角弯角藻(Ecampia zoodicaus)、骨条藻(Skeletonema spp.)、具槽帕拉藻(Paralia sulcata)、微小海链藻(Thalassiosira exigua)、标志星杆藻(Asterionella notula)、旋链角毛藻(Chaetoceros curvisetus)、新月菱形藻(Nitzchia closterium)、派格棍形藻(Bacillaria paxillifera)、异常角毛藻(Chaetoceros abmormis)、小细柱藻(Leptocylindrus minutum)、宽角曲舟藻(Pleurosigma angulatum)和美丽曲舟藻(Pleurosigma formosum)。不同季节优势种有一定程度交错, 仅在单季占优的有6种, 有2/3在3个以上季节出现, 具槽帕拉藻、骨条藻为四季优势种。浮游植物物种多样性和均匀度总体较好, 群落结构稳定。与毗邻海区相比, 本区物种丰富度偏低, 丰度高于毗邻海区, 种类组成相似, 优势种却有较大差别。Pearson相关分析表明, 溶解无机氮及活性磷酸盐仅在1月与丰度存在极显著的正相关, 是促使丰度为四季最高的原因。涉海工程施工产生的悬浮物和冲击波是影响浮游植物群落的主要因素, 大量海洋工程建设案例表明, 施工期造成的浮游植物丰度下降趋势和优势种更替混乱在工程结束后能得以恢复。  相似文献   

18.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2015,39(5):902-909
为了解三峡库区的忠县甘井河段水域牧场生态渔业对水环境的影响, 于2013 年3、6、9 及12 月按季度对该河段4 个站点进行了浮游植物群落结构及水体理化因子的监测, 并采用生物多样性指数法和综合营养状态指数法对水体营养状况进行了评价。结果表明, 该河段浮游植物有7 门93 个属种, 其中绿藻门的物种数最多, 有37 种, 占浮游植物群落总数的39.79%, 其次为硅藻门和蓝藻门, 物种数分别为26 种和13 种,分别占浮游植物群落总数的27.96%和13.98%;浮游植物的年均丰度为757.67104 ind./L, 变化范围(3.065743.99)104 ind./L, 年均生物量为4.40 mg/L, 变化范围0.0317.67 mg/L;水体的年平均透明度为1.18 m, 叶绿素a、总磷、总氮含量分别为8.54 g/L、0.13 mg/L、1.95 mg/L;浮游植物香农多样性指数(H')、均匀度指数(J)年均值分别为2.90 和0.88, 全年综合营养状态指数值为37.5971.86, 由此推断, 甘井河水质属于中污染轻污染状态、中营养型富营养型。在鱼类生长旺季的6 月, 甘井河段养殖区内的水质优于非养殖区, 这可能与养殖区内放养滤食性鱼类有关, 证实了水域牧场没有带来水环境的污染, 反而能提高生物多样性, 在一定程度上改善了水体。    相似文献   

19.
Li QQ  Deng JC  Hu WP  Hu LM  Gao F  Zhu JG 《应用生态学报》2010,21(7):1844-1850
利用典范相关分析方法(CCA),对太湖金墅湾水源地水体浮游植物群落结构及其与环境因子之间的关系进行了研究.共鉴定浮游植物7门58属,群落组成以蓝藻、硅藻和绿藻为主;夏季浮游植物的种类和数量均较多,平均密度为250×104ind.L-1,略高于春季(238×104ind.L-1).春、夏2季浮游植物群落结构差异较大,春季以蓝藻为最优势门类、鱼腥藻为最优势类群;夏季以绿藻为最优势门类,无最优势类群,但平裂面藻和栅藻在数量上较占优势.除受季节温度影响外,春季影响浮游植物分布的主要环境因子依次为铵态氮、总磷、总氮和磷酸盐,而总氮、铵态氮、磷酸盐、悬浮物、高等水生植物、总磷和透明度对夏季浮游植物分布的影响较大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号