首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computed tomography (CT) is a non-invasive imaging modality used to monitor human lung cancers. Typically, tumor volumes are calculated using manual or semi-automated methods that require substantial user input, and an exponential growth model is used to predict tumor growth. However, these measurement methodologies are time-consuming and can lack consistency. In addition, the availability of datasets with sequential images of the same tumor that are needed to characterize in vivo growth patterns for human lung cancers is limited due to treatment interventions and radiation exposure associated with multiple scans. In this paper, we performed micro-CT imaging of mouse lung cancers induced by overexpression of ribonucleotide reductase, a key enzyme in nucleotide biosynthesis, and developed an advanced semi-automated algorithm for efficient and accurate tumor volume measurement. Tumor volumes determined by the algorithm were first validated by comparison with results from manual methods for volume determination as well as direct physical measurements. A longitudinal study was then performed to investigate in vivo murine lung tumor growth patterns. Individual mice were imaged at least three times, with at least three weeks between scans. The tumors analyzed exhibited an exponential growth pattern, with an average doubling time of 57.08 days. The accuracy of the algorithm in the longitudinal study was also confirmed by comparing its output with manual measurements. These results suggest an exponential growth model for lung neoplasms and establish a new advanced semi-automated algorithm to measure lung tumor volume in mice that can aid efforts to improve lung cancer diagnosis and the evaluation of therapeutic responses.  相似文献   

2.
Primary lung cancer remains the leading cause of cancer-related death in the Western world, and the lung is a common site for recurrence of extrathoracic malignancies. Small-animal (rodent) models of cancer can have a very valuable role in the development of improved therapeutic strategies. However, detection of mouse pulmonary tumors and their subsequent response to therapy in situ is challenging. We have recently described MRI as a reliable, reproducible and nondestructive modality for the detection and serial monitoring of pulmonary tumors. By combining respiratory-gated data acquisition methods with manual and automated segmentation algorithms described by our laboratory, pulmonary tumor burden can be quantitatively measured in approximately 1 h (data acquisition plus analysis) per mouse. Quantitative, analytical methods are described for measuring tumor burden in both primary (discrete tumors) and metastatic (diffuse tumors) disease. Thus, small-animal MRI represents a novel and unique research tool for preclinical investigation of therapeutic strategies for treatment of pulmonary malignancies, and it may be valuable in evaluating new compounds targeting lung cancer in vivo.  相似文献   

3.
Angiogenesis, the physiological process of sprouting of new blood vessels from pre-existing ones, is a key biological feature of almost all cancers. Among the multitude of factors driving tumor angiogenesis, vascular endothelial growth factor (VEGF) is the most potent, exerting myriad effects on vascular pruning and sprouting, permeability, network formation, proliferation, and cell death. Despite the initial unimpressive clinical performance of anti-VEGF antibody (bevacizumab) as cancer monotherapy, clear improvements in clinical outcomes following combination bevacizumab and chemotherapy regimens and multi-targeted VEGF receptor tyrosine kinase inhibitors (sorafenib and sunitinib) in select tumor types have established VEGF-targeted agents as an effective means of controlling cancer growth. Prolongation of overall survival and cure with these agents, however, remains elusive. Moreover, recent data has revealed key differences in the therapeutic and biological tumor response to antibody versus receptor kinase VEGF inhibitors and suggested, at least pre-clinically, that VEGF blockade in certain circumstances may actually promote more aggressive tumor growth. Given the diverse mechanisms and potentially opposing roles of VEGF neutralization in cancer biology, identification of novel biomarkers predictive of in vivo angiogenic responses may hold the key to optimizing therapeutic outcomes of anti-VEGF therapy in future cancer patients.  相似文献   

4.
Although bioluminescence imaging (BLI) shows promise for monitoring tumor burden in animal models of cancer, these analyses remain mostly qualitative. Here we describe a method for bioluminescence imaging to obtain a semi-quantitative analysis of tumor burden and treatment response. This method is based on the calculation of a luminoscore, a value that allows comparisons of two animals from the same or different experiments. Current BLI instruments enable the calculation of this luminoscore, which relies mainly on the acquisition conditions (back and front acquisitions) and the drawing of the region of interest (manual markup around the mouse). Using two previously described mouse lymphoma models based on cell engraftment, we show that the luminoscore method can serve as a noninvasive way to verify successful tumor cell inoculation, monitor tumor burden, and evaluate the effects of in situ cancer treatment (CpG-DNA). Finally, we show that this method suits different experimental designs. We suggest that this method be used for early estimates of treatment response in preclinical small-animal studies.  相似文献   

5.
Rituximab/chemotherapy relapsed and refractory B cell lymphoma patients have a poor overall prognosis, and it is urgent to develop novel drugs for improving the therapy outcomes. Here, we examined the therapeutic effects of chidamide, a new histone deacetylase (HDAC) inhibitor, on the cell and mouse models of rituximab/chemotherapy resistant B-cell lymphoma. In Raji-4RH/RL-4RH cells, the rituximab/chemotherapy resistant B-cell lymphoma cell lines (RRCL), chidamide treatment induced growth inhibition and G0/G1 cell cycle arrest. The primary B-cell lymphoma cells from Rituximab/chemotherapy relapsed patients were sensitive to chidamide. Interestingly, chidamide triggered the cell death with the activation of autophagy in RRCLs, likely due to the lack of the pro-apoptotic proteins. Based on the RNA-seq and chromatin immunoprecipitation (ChIP) analysis, we identified BTG1 and FOXO1 as chidamide target genes, which control the autophagy and the cell cycle, respectively. Moreover, the combination of chidamide with the chemotherapy drug cisplatin increased growth inhibition on the RRCL in a synergistic manner, and significantly reduced the tumor burden of a mouse lymphoma model established with engraftment of RRCL. Taken together, these results provide a theoretic and mechanistic basis for further evaluation of the chidamide-based treatment in rituximab/chemotherapy relapsed and refractory B-cell lymphoma patients.Subject terms: Targeted therapies, B-cell lymphoma  相似文献   

6.
Background aimsPancreatic cancer, sometimes called a ‘silent killer’, is one of the most aggressive human malignancies, with a very poor prognosis. It is the fourth leading cause of cancer-related morbidity and mortality in the USA.MethodsA mouse peritoneal model was used to test the ability of unengineered rat umbilical cord matrix-derived stem cells (UCMSC) to control growth of pancreatic cancer. In vivo results were supported by various in vitro assays, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), direct cell count, [3H]thymidine uptake and soft agar colony assays.ResultsCo-culture of rat UCMSC with PAN02 murine pancreatic carcinoma cells (UCMSC:PAN02, 1:6 and 1:3) caused G0/G1 arrest and significantly attenuated the proliferation of PAN02 tumor cells, as monitored by MTT assay, direct cell counts and [3H]thymidine uptake assay. Rat UCMSC also significantly reduced PAN02 colony size and number, as measured by soft agar colony assay. The in vivo mouse studies showed that rat UCMSC treatment significantly decreased the peritoneal PAN02 tumor burden 3 weeks after tumor transplantation and increased mouse survival time. Histologic study revealed that intraperitoneally administered rat UCMSC survived for at least 3 weeks, and the majority were found near or inside the tumor.ConclusionsThese results indicate that naive rat UCMSC alone remarkably attenuate the growth of pancreatic carcinoma cells in vitro and in a mouse peritoneal model. This implies that UCMSC could be a potential tool for targeted cytotherapy for pancreatic cancer.  相似文献   

7.
The latency and reactivation of Mycobacterium tuberculosis infection has been well studied. However, there have been few studies of the latency and reactivation of Mycobacterium avium complex (MAC), the most common etiological non-tuberculous Mycobacterium species next to M. tuberculosis in humans worldwide. We hypothesized that latent MAC infections can be reactivated following immunosuppression after combination chemotherapy with clarithromycin and rifampicin under experimental conditions. To this end, we employed a modified Cornell-like murine model of tuberculosis and investigated six strains consisting of two type strains and four clinical isolates of M. avium and M. intracellulare. After aerosol infection of each MAC strain, five to six mice per group were euthanized at 2, 4, 10, 18, 28 and 35 weeks post-infection, and lungs were sampled to analyze bacterial burden and histopathology. One strain of each species maintained a culture-negative state for 10 weeks after completion of 6 weeks of chemotherapy, but was reactivated after 5 weeks of immunosuppression in the lungs with dexamethasone (three out of six mice in M. avium infection) or sulfasalazine (four out of six mice in both M. avium and M. intracellulare infection). The four remaining MAC strains exhibited decreased bacterial loads in response to chemotherapy; however, they remained at detectable levels and underwent regrowth after immunosuppression. In addition, the exacerbated lung pathology demonstrated a correlation with bacterial burden after reactivation. In conclusion, our results suggest the possibility of MAC reactivation in an experimental mouse model, and experimentally demonstrate that a compromised immune status can induce reactivation and/or regrowth of MAC infection.  相似文献   

8.
Angiogenesis plays an essential role in tumor growth, invasion and metastasis. After initial pessimism about the usefulness of the antiangiogenic therapeutic approach for cancer, interest has increased in the development of antiangiogenic compounds after the first clinical approval of an antiangiogenic therapy. The anti-vascular endothelial growth factor (VEGF) antibody bevacizumab has recently been approved for use in combination with chemotherapy for the treatment of metastatic colorectal and non-small cell lung cancer patients. However, no survival benefit has been demonstrated in anti-VEGF monotherapy trials, probably due to the high complexity of tumor angiogenesis regulation. Experimental and clinical data, including the approval of the multitargeted drugs sunitinib and sorafenib, indicate that exciting results, including tumor regression, can be expected from the combined targeting of different pathways in the tumor angiogenesis scenario. Several obstacles, including the high cost of new molecular targeted drugs make this therapeutic approach difficult.  相似文献   

9.
Nontuberculous mycobacteria (NTM) infection is common in patients with structural lung damage. To address how NTM infection is established and causes lung damage, we established an NTM mouse model by intranasal inoculation of clinical isolates of M. intracellulare. During the 39-week course of infection, the bacteria persistently grew in the lung and caused progressive granulomatous and fibrotic lung damage with mortality exceeding 50%. Lung neutrophils were significantly increased at 1 week postinfection, reduced at 2 weeks postinfection and increased again at 39 weeks postinfection. IL-17A was increased in the lungs at 1–2 weeks of infection and reduced at 3 weeks postinfection. Depletion of neutrophils during early (0–2 weeks) and late (32–34 weeks) infection had no effect on mortality or lung damage in chronically infected mice. However, neutralization of IL-17A during early infection significantly reduced bacterial burden, fibrotic lung damage, and mortality in chronically infected mice. Since it is known that IL-17A regulates matrix metalloproteinases (MMPs) and that MMPs contribute to the pathogenesis of pulmonary fibrosis, we determined the levels of MMPs in the lungs of M. intracellulare-infected mice. Interestingly, MMP-3 was significantly reduced by anti-IL-17A neutralizing antibody. Moreover, in vitro data showed that exogenous IL-17A exaggerated the production of MMP-3 by lung epithelial cells upon M. intracellulare infection. Collectively, our findings suggest that early IL-17A production precedes and promotes organized pulmonary M. intracellulare infection in mice, at least in part through MMP-3 production.  相似文献   

10.
Despite numerous efforts, drug based treatments for patients suffering from lung cancer remains poor. As a promising alternative, we investigated the therapeutic potential of BC-819 for the treatment of lung cancer in mouse tumor models. BC-819 is a novel plasmid DNA which encodes for the A-fragment of Diphtheria toxin and has previously been shown to successfully inhibit tumor growth in human clinical study of bladder carcinoma. In a first set of experiments, we examined in vitro efficacy of BC-819 in human lung cancer cell-lines NCI-H460, NCI-H358 and A549, which revealed >90% reduction of cell growth. In vivo efficacy was examined in an orthotopic mouse xenograft lung cancer model and in a lung metastasis model using luminescent A549-C8-luc adenocarcinoma cells. These cells resulted in peri- and intra-bronchiolar tumors upon intrabronchial application and parenchymal tumors upon intravenous injection, respectively. Mice suffering from these lung tumors were treated with BC-819, complexed to branched polyethylenimine (PEI) and aerosolized to the mice once per week for a period of 10 weeks. Using this regimen, growth of intrabronchially induced lung tumors was significantly inhibited (p = 0.01), whereas no effect could be observed in mice suffering from lung metastasis. In summary, we suggest that aerosolized PEI/BC-819 is capable of reducing growth only in tumors arising from the luminal part of the airways and are therefore directly accessible for inhaled BC-819.  相似文献   

11.

Purpose

We have compared cure from local/metastatic tumor growth in BALB/c mice receiving EMT6 or the poorly immunogenic, highly metastatic 4THM, breast cancer cells following manipulation of immunosuppressive CD200:CD200R interactions or conventional chemotherapy.

Methods

We reported previously that EMT6 tumors are cured in CD200R1KO mice following surgical resection and immunization with irradiated EMT6 cells and CpG oligodeoxynucleotide (CpG), while wild-type (WT) animals developed pulmonary and liver metastases within 30 days of surgery. We report growth and metastasis of both EMT6 and a highly metastatic 4THM tumor in WT mice receiving iv infusions of Fab anti-CD200R1 along with CpG/tumor cell immunization. Metastasis was followed both macroscopically (lung/liver nodules) and microscopically by cloning tumor cells at limiting dilution in vitro from draining lymph nodes (DLN) harvested at surgery. We compared these results with local/metastatic tumor growth in mice receiving 4 courses of combination treatment with anti-VEGF and paclitaxel.

Results

In WT mice receiving Fab anti-CD200R, no tumor cells are detectable following immunotherapy, and CD4+ cells produced increased TNFα/IL-2/IFNγ on stimulation with EMT6 in vitro. No long-term cure was seen following surgery/immunotherapy of 4THM, with both microscopic (tumors in DLN at limiting dilution) and macroscopic metastases present within 14 d of surgery. Chemotherapy attenuated growth/metastases in 4THM tumor-bearers and produced a decline in lung/liver metastases, with no detectable DLN metastases in EMT6 tumor-bearing mice-these latter mice nevertheless showed no significantly increased cytokine production after restimulation with EMT6 in vitro. EMT6 mice receiving immunotherapy were resistant to subsequent re-challenge with EMT6 tumor cells, but not those receiving curative chemotherapy. Anti-CD4 treatment caused tumor recurrence after immunotherapy, but produced no apparent effect in either EMT6 or 4THM tumor bearers after chemotherapy treatment.

Conclusion

Immunotherapy, but not chemotherapy, enhances CD4+ immunity and affords long-term control of breast cancer growth and resistance to new tumor foci.  相似文献   

12.
Several angiogenesis inhibitors targeting the vascular endothelial growth factor (VEGF) signaling pathway have been approved for cancer treatment. However, VEGF inhibitors alone were shown to promote tumor invasion and metastasis by increasing intratumoral hypoxia in some preclinical and clinical studies. Emerging reports suggest that Delta-like ligand 4 (Dll4) is a promising target of angiogenesis inhibition to augment the effects of VEGF inhibitors. To evaluate the effects of simultaneous blockade against VEGF and Dll4, we developed a bispecific antibody, HD105, targeting VEGF and Dll4. The HD105 bispecific antibody, which is composed of an anti-VEGF antibody (bevacizumab-similar) backbone C-terminally linked with a Dll4-targeting single-chain variable fragment, showed potent binding affinities against VEGF (KD: 1.3 nM) and Dll4 (KD: 30 nM). In addition, the HD105 bispecific antibody competitively inhibited the binding of ligands to their receptors, i.e., VEGF to VEGFR2 (EC50: 2.84 ± 0.41 nM) and Dll4 to Notch1 (EC50: 1.14 ± 0.06 nM). Using in vitro cell-based assays, we found that HD105 effectively blocked both the VEGF/VEGFR2 and Dll4/Notch1 signaling pathways in endothelial cells, resulting in a conspicuous inhibition of endothelial cell proliferation and sprouting. HD105 also suppressed Dll4-induced Notch1-dependent activation of the luciferase gene. In vivo xenograft studies demonstrated that HD105 more efficiently inhibited the tumor progression of human A549 lung and SCH gastric cancers than an anti-VEGF antibody or anti-Dll4 antibody alone. In conclusion, HD105 may be a novel therapeutic bispecific antibody for cancer treatment.  相似文献   

13.
Although angiogenesis has been proposed as a therapeutic target for the treatment of ovarian granulosa cell tumor (GCT), its potential has not been evaluated in controlled studies. To do so, we used the Ptentm1Hwu/tm1Hwu; Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ (PCA) mouse model, which develops GCTs that mimic the advanced disease in women. A monoclonal anti-vascular endothelial growth factor A (VEGFA) antibody was administered weekly to PCA mice beginning at 3 weeks of age. By 6 weeks of age, anti-VEGFA therapy significantly decreased tumor weights relative to controls (P < .05) and increased survival, with all treated animals but none of the controls surviving to 8 weeks of age. Analyses of PCA tumors showed that anti-VEGFA treatment resulted in significant decreases in tumor cell proliferation and microvessel density relative to controls (P < .05). However, treatment did not have a significant effect on apoptosis or tumor necrosis. The VEGFA receptor 2 (VEGFR2) signaling effector p44/p42 mitogen-activated protein kinase (MAPK), whose activity is associated with cell proliferation, was significantly less phosphorylated (i.e., activated) in tumors from the treated group (P < .05). Conversely, no significant difference was found in the activation of protein kinase B, a VEGFR2 signaling effector associated with cell survival. Together, these results suggest that anti-VEGFA therapy is effective at inhibiting GCT growth in the PCA model and acts by reducing microvascular density and cell proliferation through inhibition of the VEGFR2-MAPK pathway. Findings from this preclinical model therefore support the investigation of targeting VEGFA for the adjuvant treatment of GCT in women.  相似文献   

14.
Metastasis is the main cause of death in the majority of cancer types and consequently a main focus in cancer research. However, the detection of micrometastases by radiologic imaging and the success in their therapeutic eradication remain limited.While animal models have proven to be invaluable tools for cancer research1, the monitoring/visualization of micrometastases remains a challenge and inaccurate evaluation of metastatic spread in preclinical studies potentially leads to disappointing results in clinical trials2. Consequently, there is great interest in refining the methods to finally allow reproducible and reliable detection of metastases down to the single cell level in normal tissue. The main focus therefore is on techniques, which allow the detection of tumor cells in vivo, like micro-computer tomography (micro-CT), positron emission tomography (PET), bioluminescence or fluorescence imaging3,4. We are currently optimizing these techniques for in vivo monitoring of primary tumor growth and metastasis in different osteosarcoma models. Some of these techniques can also be used for ex vivo analysis of metastasis beside classical methods like qPCR5, FACS6 or different types of histological staining. As a benchmark, we have established in the present study the stable transfection or transduction of tumor cells with the lacZ gene encoding the bacterial enzyme β-galactosidase that metabolizes the chromogenic substrate 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) to an insoluble indigo blue dye7 and allows highly sensitive and selective histochemical blue staining of tumor cells in mouse tissue ex vivo down to the single cell level as shown here. This is a low-cost and not equipment-intensive tool, which allows precise validation of metastasis8 in studies assessing new anticancer therapies9-11. A limiting factor of X-gal staining is the low contrast to e.g. blood-related red staining of well vascularized tissues. In lung tissue this problem can be solved by in-situ lung perfusion, a technique that was recently established by Borsig et al.12 who perfused the lungs of mice under anesthesia to clear them from blood and to fix and embed them in-situ under inflation through the trachea. This method prevents also the collapse of the lung and thereby maintains the morphology of functional lung alveoli, which improves the quality of the tissue for histological analysis. In the present study, we describe a new protocol, which takes advantage of a combination of X-gal staining of lacZ-expressing tumor cells and in-situ perfusion and fixation of lung tissue. This refined protocol allows high-sensitivity detection of single metastatic cells in the lung and enabled us in a recent study to detect "dormant" lung micrometastases in a mouse model13, which was originally described to be non-metastatic14.  相似文献   

15.
16.
Breast cancer often metastasizes to bone causing osteolytic bone resorption which releases active TGFβ. Because TGFβ favors progression of breast cancer metastasis to bone, we hypothesized that treatment using anti-TGFβ antibody may reduce tumor burden and rescue tumor-associated bone loss in metastatic breast cancer. In this study we have tested the efficacy of an anti-TGFβ antibody 1D11 preventing breast cancer bone metastasis. We have used two preclinical breast cancer bone metastasis models, in which either human breast cancer cells or murine mammary tumor cells were injected in host mice via left cardiac ventricle. Using several in vivo, in vitro and ex vivo assays, we have demonstrated that anti-TGFβ antibody treatment have significantly reduced tumor burden in the bone along with a statistically significant threefold reduction in osteolytic lesion number and tenfold reduction in osteolytic lesion area. A decrease in osteoclast numbers (p = 0.027) in vivo and osteoclastogenesis ex vivo were also observed. Most importantly, in tumor-bearing mice, anti-TGFβ treatment resulted in a twofold increase in bone volume (p<0.01). In addition, treatment with anti-TGFβ antibody increased the mineral-to-collagen ratio in vivo, a reflection of improved tissue level properties. Moreover, anti-TGFβ antibody directly increased mineralized matrix formation in calverial osteoblast (p = 0.005), suggesting a direct beneficial role of anti-TGFβ antibody treatment on osteoblasts. Data presented here demonstrate that anti-TGFβ treatment may offer a novel therapeutic option for tumor-induced bone disease and has the dual potential for simultaneously decreasing tumor burden and rescue bone loss in breast cancer to bone metastases. This approach of intervention has the potential to reduce skeletal related events (SREs) in breast cancer survivors.  相似文献   

17.

Background and Purpose

Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations.

Methods

We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error.

Results

Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman''s rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation.

Conclusions

In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity.  相似文献   

18.
19.
TGFβ is reportedly responsible for accumulation of CD4+Foxp3+ regulatory T cells (Tregs) in tumor. Thus, we treated mouse 4T1 mammary carcinoma with 1D11, a neutralizing anti-TGFβ (1,2,3) antibody. The treatment delayed tumor growth, but unexpectedly increased the proportion of Tregs in tumor. In vitro, 1D11 enhanced while TGFβ potently inhibited the proliferation of Tregs. To enhance the anti-tumor effects, 1D11 was administered with cyclophosphamide which was reported to eliminate intratumoral Tregs. This combination resulted in long term tumor-free survival of up to 80% of mice, and the tumor-free mice were more resistant to re-challenge with tumor. To examine the phenotype of tumor infiltrating immune cells, 4T1-tumor bearing mice were treated with 1D11 and a lower dose of cyclophosphamide. This treatment markedly inhibited tumor growth, and was accompanied by massive infiltration of IFNγ-producing T cells. Furthermore, this combination markedly decreased the number of splenic CD11b+Gr1+ cells, and increased their expression levels of MHC II and CD80. In a spontaneous 4T1 lung metastasis model with resection of primary tumor, this combination therapy markedly increased the survival of mice, indicating it was effective in reducing lethal metastasis burden. Taken together, our data show that anti-TGFβ antibody and cyclophosphamide represents an effective chemoimmunotherapeutic combination.  相似文献   

20.
Atorvastatin is widely used to lower blood cholesterol and to reduce risk of cardiovascular disease–associated complications. Epidemiological investigations and preclinical studies suggest that statins such as atorvastatin have antitumor activity for various types of cancer. Tuberous sclerosis (TSC) is a tumor syndrome caused by TSC1 or TSC2 mutations that lead to aberrant activation of mTOR and tumor formation in multiple organs. Previous studies have demonstrated that atorvastatin selectively suppressed growth and proliferation of mouse Tsc2 null embryonic fibroblasts through inhibition of mTOR. However, atorvastatin alone did not reduce tumor burden in the liver and kidneys of Tsc2+/? mice as assessed by histological analysis, and no combination therapy of rapamycin and atorvastatin has been tried. In this study, we used T2-weighted magnetic resonance imaging to track changes in tumor number and size in the kidneys of a Tsc1+/? mouse model and to assess the efficacy of rapamycin and atorvastatin alone and as a combination therapy. We found that rapamycin alone or rapamycin combined with atorvastatin significantly reduced tumor burden, while atorvastatin alone did not. Combined therapy with rapamycin and atorvastatin appeared to be more effective for treating renal tumors than rapamycin alone, but the difference was not statistically significant. We conclude that combined therapy with rapamycin and atorvastatin is unlikely to provide additional benefit over rapamycin as a single agent in the treatment of Tsc-associated renal tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号