首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.

Background and Aims

Spring geophytes require a period of low temperature for proper flower development but the mechanism that underlies the relationship between cold treatment and flowering remains unknown. The present study aims to compare the developmental anatomy and carbohydrate content of the tuberous geophyte Corydalis bracteata growing under natural winter conditions from 10 to −10 °C (field-grown) and under a mild temperature regime of 18 °C (indoor-grown plants).

Methods

Samples were studied under light and electron microscopy. A histochemical test (periodic acid – Schiff''s) was employed to identify starch in sectioned material. Sugars were analysed by capillary gas chromatography. Apoplastic wash fluid was prepared.

Key Results

Under natural conditions, shoots were elongated, and buds gained in dry mass and developed normally. For indoor-grown plants, these parameters were lower in value and, from December, a progressive necrosis of flower buds was observed. The tuber consisted of the new developing one, which was connected to the bud, and the old tuber with its starch reserve. Due to the absence of plasmodesmata between new and old tuber cells, sugar transport cannot be through the symplast. Thus, a potential apoplastic route is proposed from old tuber phloem parenchyma cells to the adjacent new tuber cells. Sugar content in buds during the autumn months (September–November) was lower for indoor-grown plants than control plants, whereas the sugar content in tubers during the same period was similar for plants from both temperature treatments. However, the amount of apoplastic sugars in tubers of field-grown plants was almost 15-fold higher than in indoor-grown tubers.

Conclusions

The results suggest that low temperature activates the apoplastic route of sugar transport in C. bracteata tubers and a consequent carbohydrate delivery to the bud. In the absence of cold treatment, the carbohydrate reserve is locked in old tuber cells so the nutrient supply to the buds is suppressed, possibly leading to bud abortion.  相似文献   

6.
7.
8.

Background

Brassica napus is the third leading source of vegetable oil in the world after soybean and oil palm. The accumulation of gene sequences, especially expressed sequence tags (ESTs) from plant cDNA libraries, has provided a rich resource for genes discovery including potential antimicrobial peptides (AMPs). In this study, we used ESTs including those generated from B. napus cDNA libraries of seeds, pathogen-challenged leaves and deposited in the public databases, as a model, to perform in silico identification and consequently in vitro confirmation of putative AMP activities through a highly efficient system of recombinant AMP prokaryotic expression.

Results

In total, 35,788 were generated from cDNA libraries of pathogen-challenged leaves and 187,272 ESTs from seeds of B. napus, and the 644,998 ESTs of B. napus were downloaded from the EST database of PlantGDB. They formed 201,200 unigenes. First, all the known AMPs from the AMP databank (APD2 database) were individually queried against all the unigenes using the BLASTX program. A total of 972 unigenes that matched the 27 known AMP sequences in APD2 database were extracted and annotated using Blast2GO program. Among these unigenes, 237 unigenes from B. napus pathogen-challenged leaves had the highest ratio (1.15 %) in this unigene dataset, which is 13 times that of the unigene datasets of B. napus seeds (0.09 %) and 2.3 times that of the public EST dataset. About 87 % of each EST library was lipid-transfer protein (LTP) (32 % of total unigenes), defensin, histone, endochitinase, and gibberellin-regulated proteins. The most abundant unigenes in the leaf library were endochitinase and defensin, and LTP and histone in the pub EST library. After masking of the repeat sequence, 606 peptides that were orthologous matched to different AMP families were found. The phylogeny and conserved structural motifs of seven AMPs families were also analysed. To investigate the antimicrobial activities of the predicted peptides, 31 potential AMP genes belonging to different AMP families were selected to test their antimicrobial activities after bioinformatics identification. The AMP genes were all optimized according to Escherichia coli codon usage and synthetized through one-step polymerase chain reaction method. The results showed that 28 recombinant AMPs displayed expected antimicrobial activities against E. coli and Micrococcus luteus and Sclerotinia sclerotiorum strains.

Conclusion

The study not only significantly expanded the number of known/predicted peptides, but also contributed to long-term plant genetic improvement for increased resistance to diverse pathogens of B.napus. These results proved that the high-throughput method developed that combined an in silico procedure with a recombinant AMP prokaryotic expression system is considerably efficient for identification of new AMPs from genome or EST sequence databases.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1849-x) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
11.
12.

Background

Mycoheterotrophic orchids are achlorophyllous plants that obtain carbon and nutrients from their mycorrhizal fungi. They often show strong preferential association with certain fungi and may obtain nutrients from surrounding photosynthetic plants through ectomycorrhizal fungi. Gastrodia is a large genus of mycoheterotrophic orchids in Asia, but Gastrodia species’ association with fungi has not been well studied. We asked two questions: (1) whether certain fungi were preferentially associated with G. flavilabella, which is an orchid in Taiwan and (2) whether fungal associations of G. flavilabella were affected by the composition of fungi in the environment.

Results

Using next-generation sequencing, we studied the fungal communities in the tubers of Gastrodia flavilabella and the surrounding soil. We found (1) highly diversified fungi in the G. flavilabella tubers, (2) that Mycena species were the predominant fungi in the tubers but minor in the surrounding soil, and (3) the fungal communities in the G. flavilabella tubers were clearly distinct from those in the surrounding soil. We also found that the fungal composition in soil can change quickly with distance.

Conclusions

G. flavilabella was associated with many more fungi than previously thought. Among the fungi in the tuber of G. flavilabella, Mycena species were predominant, different from the previous finding that adult G. elata depends on Armillaria species for nutritional supply. Moreover, the preferential fungus association of G. flavilabella was not significantly influenced by the composition of fungi in the environment.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1422-7) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.

Background and Aims

The three-dimensional distributions of mineral elements in potato tubers provide insight into their mechanisms of transport and deposition. Many of these minerals are essential to a healthy human diet, and characterizing their distribution within the potato tuber will guide the effective utilization of this staple foodstuff.

Methods

The variation in mineral composition within the tuber was determined in three dimensions, after determining the orientation of the harvested tuber in the soil. The freeze-dried tuber samples were analysed for minerals using inductively coupled plasma-mass spectrometry (ICP-MS). Minerals measured included those of nutritional significance to the plant and to human consumers, such as iron, zinc, copper, calcium, magnesium, manganese, phosphorus, potassium and sulphur.

Key Results

The concentrations of most minerals were higher in the skin than in the flesh of tubers. The potato skin contained about 17 % of total tuber zinc, 34 % of calcium and 55 % of iron. On a fresh weight basis, most minerals were higher in tuber flesh at the stem end than the bud end of the tuber. Potassium, however, displayed a gradient in the opposite direction. The concentrations of phosphorus, copper and calcium decreased from the periphery towards the centre of the tuber.

Conclusions

The distribution of minerals varies greatly within the potato tuber. Low concentrations of some minerals relative to those in leaves may be due to their low mobility in phloem, whereas high concentrations in the skin may reflect direct uptake from the soil across the periderm. In tuber flesh, different minerals show distinct patterns of distribution in the tuber, several being consistent with phloem unloading in the tuber and limited onward movement. These findings have implications both for understanding directed transport of minerals in plants to stem-derived storage organs and for the dietary implications of different food preparation methods for potato tubers.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号