首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three families of phospholipase C (PI-PLCbeta, gamma, and delta) are known to catalyze the hydrolysis of polyphosphoinositides such as phosphatidylinositol 4,5-bisphosphate (PIP(2)) to generate the second messengers inositol 1,4,5 trisphosphate and diacylglycerol, leading to a cascade of intracellular responses that result in cell growth, cell differentiation, and gene expression. Here we describe the founding member of a novel, structurally distinct fourth family of PI-PLC. PLCepsilon not only contains conserved catalytic (X and Y) and regulatory domains (C2) common to other eukaryotic PLCs, but also contains two Ras-associating (RA) domains and a Ras guanine nucleotide exchange factor (RasGEF) motif. PLCepsilon hydrolyzes PIP(2), and this activity is stimulated selectively by a constitutively active form of the heterotrimeric G protein Galpha(12). PLCepsilon and a mutant (H1144L) incapable of hydrolyzing phosphoinositides promote formation of GTP-Ras. Thus PLCepsilon is a RasGEF. PLCepsilon, the mutant H1144L, and the isolated GEF domain activate the mitogen-activated protein kinase pathway in a manner dependent on Ras but independent of PIP(2) hydrolysis. Our findings demonstrate that PLCepsilon is a novel bifunctional enzyme that is regulated by the heterotrimeric G protein Galpha(12) and activates the small G protein Ras/mitogen-activated protein kinase signaling pathway.  相似文献   

2.
Rabbit platelets were labelled with [3H]glycerol and incubated with or without phorbol 12-myristate 13-acetate (PMA). Membranes were then isolated and assayed for phospholipase D (PLD) activity by monitoring [3H]phosphatidylethanol formation in the presence of 300 mM-ethanol. At a [Ca2+free] of 1 microM, PLD activity was detected in control membranes, but was 5.4 +/- 0.8-fold (mean +/- S.E.M.) greater in membranes from PMA-treated platelets. Under the same conditions, 10 microM-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) stimulated PLD by 18 +/- 3-fold in control membranes, whereas PMA treatment and GTP[S] interacted synergistically to increase PLD activity by 62 +/- 12-fold. GTP[S]-stimulated PLD activity was observed in the absence of Ca2+, but was increased by 1 microM-Ca2+ (3.5 +/- 0.2-fold and 1.8 +/- 0.1-fold in membranes from control and PMA-treated platelets respectively). GTP exerted effects almost as great as those of GTP[S], but 20-30-fold higher concentrations were required. Guanosine 5'-[beta-thio]diphosphate inhibited the effects of GTP[S] or GTP, suggesting a role for a GTP-binding protein in activation of PLD. Thrombin (2 units/ml) stimulated the PLD activity of platelet membranes only very weakly and in a GTP-independent manner. The actions of PMA and analogues on PLD activity correlated with their ability to stimulate protein kinase C in intact platelets. Staurosporine, a potent protein kinase inhibitor, had both inhibitory and, at higher concentrations, stimulatory effects on the activation of PLD by PMA. The results suggest that PMA not only stimulates PLD via activation of protein kinase C but can also activate the enzyme by a phosphorylation-independent mechanism in the presence of staurosporine. However, under physiological conditions, full activation of platelet PLD may require the interplay of protein kinase C, increased Ca2+ and a GTP-binding protein, and may occur as a secondary effect of the activation of phospholipase C.  相似文献   

3.
Phospholipase Cepsilon (PLCepsilon) is one of the newest members of the phosphatidylinositol-specific phospholipase C (PLC) family. Previous studies have suggested that G-protein-coupled receptors (GPCRs) stimulate phosphoinositide (PI) hydrolysis by activating PLCbeta isoforms through G(q) family G proteins and Gbetagamma subunits. Using RNA interference to knock down PLC isoforms, we demonstrate that the GPCR agonists endothelin (ET-1), lysophosphatidic acid (LPA), and thrombin, acting through endogenous receptors, couple to both endogenous PLCepsilon and the PLCbeta isoform, PLCbeta3, in Rat-1 fibroblasts. Examination of the temporal activation of these PLC isoforms, however, reveals agonist- and isoform-specific profiles. PLCbeta3 is activated acutely within the first minute of ET-1, LPA, or thrombin stimulation but does not contribute to sustained PI hydrolysis induced by LPA or thrombin and accounts for only part of ET-1 sustained stimulation. PLCepsilon, on the other hand, predominantly accounts for sustained PI hydrolysis. Consistent with this observation, reconstitution of PLCepsilon in knockdown cells dose-dependently increases sustained, but not acute, agonist-stimulated PI hydrolysis. Furthermore, combined knockdown of both PLCepsilon and PLCbeta3 additively inhibits PI hydrolysis, suggesting independent regulation of each isoform. Importantly, ubiquitination of inositol 1,4,5-trisphosphate receptors correlates with sustained, but not acute, activation of PLCepsilon or PLCbeta3. In conclusion, GPCR agonists ET-1, LPA, and thrombin activate endogenous PLCepsilon and PLCbeta3 in Rat-1 fibroblasts. Activation of these PLC isoforms displays agonist-specific temporal profiles; however, PLCbeta3 is predominantly involved in acute and PLCepsilon in sustained PI hydrolysis.  相似文献   

4.
Phosphatidylcholine (PC) is a major source of lipid-derived second messenger molecules that function as both intracellular and extracellular signals. PC-specific phospholipase D (PLD) and phosphatidic acid phosphohydrolase (PAP) are two pivotal enzymes in this signaling system, and they act in series to generate the biologically active lipids phosphatidic acid (PA) and diglyceride. The identity of the PAP enzyme involved in PLD-mediated signal transduction is unclear. We provide the first evidence for a functional role of a type 2 PAP, PAP2b, in the metabolism of PLD-generated PA. Our data indicate that PAP2b localizes to regions of the cell in which PC hydrolysis by PLD is taking place. Using a newly developed PAP2b-specific antibody, we have characterized the expression, posttranslational modification, and localization of endogenous PAP2b. Glycosylation and localization of PAP2b appear to be cell type and tissue specific. Biochemical fractionation and immunoprecipitation analyses revealed that PAP2b and PLD2 activities are present in caveolin-1-enriched detergent-resistant membrane microdomains. We found that PLD2 and PAP2b act sequentially to generate diglyceride within this specialized membrane compartment. The unique lipid composition of these membranes may provide a selective environment for the regulation and actions of enzymes involved in signaling through PC hydrolysis.  相似文献   

5.
N-Acylethanolamines (NAEs) are endogenous lipids in plants produced from the phospholipid precursor, N-acylphosphatidylethanolamine, by phospholipase D (PLD). Here, we show that seven types of plant NAEs differing in acyl chain length and degree of unsaturation were potent inhibitors of the well-characterized, plant-specific isoform of PLD-PLD alpha. It is notable that PLD alpha, unlike other PLD isoforms, has been shown not to catalyze the formation of NAEs from N-acylphosphatidylethanolamine. In general, inhibition of PLD alpha activity by NAEs increased with decreasing acyl chain length and decreasing degree of unsaturation, such that N-lauroylethanolamine and N-myristoylethanolamine were most potent with IC(50)s at submicromolar concentrations for the recombinant castor bean (Ricinus communis) PLD alpha expressed in Escherichia coli and for partially purified cabbage (Brassica oleracea) PLD alpha. NAEs did not inhibit PLD from Streptomyces chromofuscus, and exhibited only moderate, mixed effects for two other recombinant plant PLD isoforms. Consistent with the inhibitory biochemical effects on PLD alpha in vitro, N-lauroylethanolamine, but not lauric acid, selectively inhibited abscisic acid-induced closure of stomata in epidermal peels of tobacco (Nicotiana tabacum cv Xanthi) and Commelina communis at low micromolar concentrations. Together, these results provide a new class of biochemical inhibitors to assist in the evaluation of PLD alpha physiological function(s), and they suggest a novel, lipid mediator role for endogenously produced NAEs in plant cells.  相似文献   

6.
Phospholipase D (PLD) is a phosphatidyl choline (PC)-hydrolyzing enzyme that generates phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling. Through interactions with signaling molecules, both PLD and PA can mediate a variety of cellular functions, such as, growth/proliferation, vesicle trafficking, cytoskeleton modulation, development, and morphogenesis. Therefore, systemic approaches for investigating PLD networks including interrelationship between PLD and PA and theirs binding partners, such as proteins and lipids, can enhance fundamental knowledge of roles of PLD and PA in diverse biological processes. In this review, we summarize previously reported protein-protein and protein-lipid interactions of PLD and PA and their binding partners. In addition, we describe the functional roles played by PLD and PA in these interactions, and provide PLD network that summarizes these interactions. The PLD network suggests that PLD and PA could act as a decision maker and/or as a coordinator of signal dynamics. This viewpoint provides a turning point for understanding the roles of PLD-PA as a dynamic signaling hub.  相似文献   

7.
Norepinephrine (NE) stimulates phospholipase D (PLD) through a Ras/MAPK pathway in rabbit vascular smooth muscle cells (VSMC). NE also activates calcium influx and calmodulin (CaM)-dependent protein kinase II-dependent cytosolic phospholipase A(2) (cPLA(2)). Arachidonic acid (AA) released by cPLA(2)-catalyzed phospholipid hydrolysis is then metabolized into hydroxyeicosatetraenoic acids (HETEs) through lipoxygenase and cytochrome P450 4A (CYP4A) pathways. HETEs, in turn, have been shown to stimulate Ras translocation and to increase MAPK activity in VSMC. This study was conducted to determine the contribution of cPLA(2)-derived AA and its metabolites (HETEs) to the activation of PLD. NE-induced PLD activation was reduced by two structurally distinct CaM antagonists, W-7 and calmidazolium, and by CaM-dependent protein kinase II inhibition. Blockade of cPLA(2) activity or protein depletion with selective cPLA(2) antisense oligonucleotides abolished NE-induced PLD activation. The increase in PLD activity elicited by NE was also blocked by inhibitors of lipoxygenases (baicalein) and CYP4A (17-octadecynoic acid), but not of cyclooxygenase (indomethacin). AA and its metabolites (12(S)-, 15(S)-, and 20-HETEs) increased PLD activity. PLD activation by AA and HETEs was reduced by inhibitors of Ras farnesyltransferase (farnesyl protein transferase III and BMS-191563) and MEK (U0126 and PD98059). These data suggest that HETEs are the mediators of cPLA(2)-dependent PLD activation by NE in VSMC. In addition to cPLA(2), PLD was also found to contribute to AA release for prostacyclin production via the phosphatidate phosphohydrolase/diacylglycerol lipase pathway. Finally, a catalytically inactive PLD(2) (but not PLD(1)) mutant inhibited NE-induced PLD activity, and PLD(2) was tyrosine-phosphorylated in response to NE by a MAPK-dependent pathway. We conclude that NE stimulates cPLA(2)-dependent PLD(2) through lipoxygenase- and CYP4A-derived HETEs via the Ras/ERK pathway by a mechanism involving tyrosine phosphorylation of PLD(2) in rabbit VSMC.  相似文献   

8.
In fibroblasts, the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) stimulates phospholipase D (PLD)-mediated hydrolysis of both phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) by PKC-alpha-mediated nonphosphorylating and phosphorylating mechanisms. Here we have used NIH 3T3 fibroblasts overexpressing holo PKC-epsilon and its regulatory, catalytic, and zinc finger domain fragments to determine if this isozyme also regulates PLD activity. Overexpression of holo PKC-epsilon inhibited the stimulatory effects of PMA (5-100 nM) on both PtdCho and PtdEtn hydrolysis. Overexpression of PKC-epsilon also was found to inhibit platelet-derived growth factor-induced PLD activity. Expression of the catalytic unit of PKC-epsilon had no effect on PMA-induced PLD activity. In contrast, expression of both the regulatory domain fragment and the zinc finger domain of PKC-epsilon resulted in significant inhibition of PMA-stimulated PtdCho and PtdEtn hydrolysis. Interestingly, although PKC-alpha also mediates the stimulatory effect of PMA on the synthesis of PtdCho by a phosphorylation mechanism, overexpression of holo PKC-epsilon or its regulatory domain fragments did not affect PMA-induced PtdCho synthesis. These results indicate that the PKC-epsilon system can act as a negative regulator of PLD activity and that this inhibition is mediated by its regulatory domain.  相似文献   

9.
Phospholipase D (PLD) has been implicated in survival and anti-apoptosis, but the molecular mechanism by which it responds to apoptotic stimuli is poorly unknown. Here, we demonstrate that cleavage of PLD isozymes as specific substrates of caspase differentially regulates apoptosis. PLD1 is cleaved at one internal site (DDVD545S) and PLD2 is cleaved at two or three sites (PTGD13ELD16S and DEVD28T) in the front of N-terminus. Cleavage of PLD was endogenously detected in post-mortem Alzheimer brain together with activated caspase-3, suggesting the physiological relevance. The cleavage of PLD1 but not PLD2 might act as an inactivating process since PLD1 but not PLD2 activity is significantly decreased during apoptosis, suggesting that differential cleavage of PLD isozymes could affect its enzymatic activity. Moreover, caspase-resistant mutant of PLD1 showed more potent anti-apoptotic capacity than that of wild type PLD1, whereas PLD2 maintained anti-apoptotic potency in spite of its cleavage during apoptosis. Moreover, PLD2 showed more potent anti-apoptotic effect than that of PLD1 in overexpression and knockdown experiments, suggesting that difference in anti-apoptotic potency between PLD1 and PLD2 might be due to its intrinsic protein property. Taken together, our results demonstrate that differential cleavage pattern of PLD isozymes by caspase might affect its enzymatic activity and anti-apoptotic function.  相似文献   

10.
Abstract Protein kinase C (PKC) appears to have a central role in the O2 response of neutrophils following stimulation of membrane receptors. The second messenger, diacylglycerol (DG), that activates PKC is derived from membrane phospholipids via activation of phosphatidylinositol 4,5-bisphosphate (PIP2)-phospholipase C (PLC) and phospholipase D (PLD), with the latter pathway being more prominent in primed cells. In resting cells receptor coupling of PLD is through a G-protein. Priming brings a cytoplasmic tyrosine kinase into the transducer sequence which, through protein phosphorylation, increases the efficiency of coupling between membrane receptors and PLD. Phosphatidic acid (PA), the initial product of the PLD pathway, also appears to act as a second messenger by directly activating the NADPH oxidase responsible for generating O2. Interconversion of PA and DG by phosphatidate phosphohydrolase and DG kinase determines which of these second messengers has the dominant role.  相似文献   

11.
Bovine pulmonary artery endothelial cells (BPAEC) were prelabeled with [3H]choline or [3H]myristic acid to selectively label endogenous phosphatidylcholine. BPAEC were stimulated with ATP and bradykinin (BK), and phospholipase D (PLD) activation was detected as a 4-fold increase in [3H]choline in cells prelabeled with [3H]choline or as a 2- to 3-fold increase in [3H]phosphatidylethanol in cells prelabeled with [3H]myristic acid and stimulated in the presence of ethanol. Pretreatment of BPAEC with 0.1 microM phorbol 12-myristate 13-acetate (PMA) for 22 hr completely inhibited agonist-induced PLD activation, whereas prostacyclin synthesis and [3H]phosphoinositide ([3H]PIns) hydrolysis were enhanced in pretreated cells. Long-term PMA treatment thus dissociates agonist-induced PLD activation from [3H]PIns hydrolysis, and agonist-induced prostacyclin synthesis is not dependent upon PLD activation.  相似文献   

12.
Norepinephrine (NE) stimulates phospholipase D (PLD) activity via phospholipase A2-dependent arachidonic acid release in rabbit aortic vascular smooth muscle cells (VSMC). We have previously shown that exogenous 20-hydroxyeicosatetraenoic acid (20-HETE), an eicosanoid generated through the cytochrome P450 (CYP) 4A pathway in vivo, stimulates PLD activity. Whether endogenous CYP4-derived arachidonic acid metabolites act as intracellular mediators of NE-induced PLD activation in VSMC is not known. In rabbit aortic VSMC, prototypical hepatic/renal CYP4A inducers such as fenofibrate and Wy 14643 inhibited both basal and NE-induced PLD activity after 48 h of exposure. The level of CYP4F, and to a lesser extent CYP4A, was also decreased by these agents. The expression levels of rabbit aortic VSMC CYP4A and CYP4F isoforms were reduced by antisense oligonucleotides treatment for 48 hours as measured by RTQ-PCR or Western blotting. This reduction in CYP4A or CYP4F levels did not change NE-induced PLD activation. The corresponding CYP4A scrambled and CYP4F sense oligonucleotides did not alter CYP levels. PLD activity was increased by ~70% after 15 min of stimulation with NE, whereas lauric acid omega-hydroxylase activity, a measure of fatty acid omega-hydroxylation, was unchanged. Inhibition of omega-hydroxylation with DDMS and HET0016, selective omega-hydroxylase inhibitors, and 20-HEDE, an antagonist of 20-HETE, increased PLD activity in a concentration-dependent manner and did not alter NE-induced PLD activation. These data suggest that PLD activation by NE is independent of the CYP4A/4F enzymes in rabbit aortic VSMC.  相似文献   

13.
Mitochondrial dysfunction and free radical-induced oxidative damage are critical factors in the pathogenesis of neurodegenerative diseases. Recently, phospholipid breakdown by phospholipase D (PLD) has been recognized as an important signalling pathway in the nervous system. Here, we examined the expression of PLD and alteration of membrane phospholipid in scrapie brain. We have found that protein expression and enzyme activity of PLD1 were increased in scrapie brains compared with controls; in particular, there was an increase in the mitochondrial fraction. PLD1 in mitochondrial membranes from scrapie brains, but not from control brains, was tyrosine phosphorylated. Furthermore, the concentration of mitochondrial phospholipids such as phosphatidylcholine and phosphatidylethanolamine was increased and the content of phosphatidic acid, a product of PLD activity, was up-regulated in the mitochondrial membrane fractions. Immunohistochemically, PLD1 immunoreactivity was significantly increased in activated astrocytes in both cerebral cortex and hippocampus of scrapie brains. Taken together, these results suggest that PLD activation might induce alterations in mitochondrial lipids and, in turn, mediate mitochondrial dysfunction in the brains of scrapie-infected mice.  相似文献   

14.
Treatment with dibutyryl cyclic AMP (dBcAMP) of the human, premonocytic U937 cell line results in differentiation toward a monocyte/granulocyte-like cell. This differentiation enables the cell to activate cytosolic phospholipase A2 (cPLA2) to release arachidonate upon stimulation. In contrast, undifferentiated cells are unable to release arachidonate even when stimulated with calcium ionophores. In the present research, a role for phospholipase D (PLD) in the regulation of cPLA2 was shown based on a number of observations. First, the ionomycin- and fMLP-stimulated production of arachidonate in differentiated cells was sensitive to ethanol (2% (v/v)). Ethanol acts as an alternate substrate in place of water for PLD producing phosphatidylethanol (PEt) instead of phosphatidic acid. Indeed, ionomycin stimulation of differentiated cells produced a 14-fold increase in PEt levels. Further evidence for the involvement of PLD in the regulation of cPLA2 came from the observation that the stimulated production of diacylglycerol (for which phosphatidic acid is a major source) was greatly diminished in undifferentiated cells as compared to differentiated cells. Moreover, the normally deficient activation of cPLA2 in undifferentiated cells could be stimulated to release arachidonate if the cells were electroporated in the presence of GTP[gamma]S and MgATP. This treatment stimulates phosphatidylinositol-4,5-bisphosphate (PIP2) production which appears to activate PLD and cPLA2 in subsequent steps. The phosphatidic acid (and diacylglycerol derived from phosphatidic acid) appears to greatly regulate the action of cPLA2 by an unknown mechanism, and undifferentiated cells lack the ability to stimulate PLD activity due to a dysfunction of PIP2 production.  相似文献   

15.
The phospholipase D (PLD) from Streptomyces chromofuscus is a soluble enzyme known to be activated by the phosphatidic acid-calcium complexes. PLD-catalyzed hydrolysis of phospholipids in aqueous medium leads to the formation of phosphatidic acid (PA). Previous studies concluded on an allosteric activation of PLD by the PA-calcium complexes. In this work, the role of PA and calcium was investigated in terms of membrane structure and dynamics. The role of calcium in PLD partitioning between the soluble phase and the water-lipid interface was tested. The monomolecular film technique was used to measure both membrane dynamics and PLD activity. These experiments provided information on PLD activity at a water-lipid interface. Moreover, the ability of PA to enhance PLD activity toward phosphatidylcholine was correlated to the physical properties of PA itself, affecting the rheology of the membrane. The effect of calcium was investigated on PLD binding to lipids and on the catalytic process by competition experiments between a soluble and a vesicular substrate. These experiments confirmed the absolute PLD requirement for calcium and pointed out the importance of calcium for PLD catalytic process and for the enzyme location at the water-lipid interface.  相似文献   

16.
1-Butanol is commonly used as a substrate for phospholipase D (PLD) activity measurement. Surprisingly we found that, in the presence of 30 mM 1-butanol (standard PLD assay conditions), PLD1 activity in COS-7 cells was lost after incubation for 2 min. In contrast, in the presence of the protein kinase C (PKC) inhibitor staurosporine or dominant negative PKCalpha D481E, the activity was sustained for at least 30min. The binding between PLD1 and PKCalpha was also lost after 2 min incubation with 30 mM 1-butanol while staurosporine and D481E maintained the binding. 1-Butanol at 2 mM did not inhibit PLD1 basal activity or PLD1 binding to PKCalpha, and staurosporine and PKCalpha D481E produced a constant increase in PLD1 basal activity of 2-fold. These results indicate that 1-butanol is inhibitory to PLD1 activity by reducing its association with PKCalpha, and that the concentration of 1-butanol is an important consideration in assaying basal PLD1 activity.  相似文献   

17.
Phospholipase Cepsilon (PLCepsilon) is activated by various growth factors or G-protein-coupled receptor ligands via different activation mechanisms. The Ras association (RA) domain of PLCepsilon is known to be important for its ability to bind with Ras-family GTPase upon growth factor stimulation. In the present study, we identified Siah1 and Siah2 as novel binding partners of the PLCepsilon RA domain. Both Siah1 and Siah2 interacted with the RA2 domain of PLCepsilon, and the mutation of Lys-2186 of the PLCepsilon RA2 domain abolished this association. Moreover, Siah induced the ubiquitination and degradation of PLCepsilon upon epidermal growth factor (EGF) stimulation, and Siah proteins were phosphorylated on multiple tyrosine residues via an Src-dependent pathway upon EGF treatment. The Src inhibitor abolished the EGF-dependent ubiquitination of PLCepsilon, and the Siah1 phosphorylation-deficient mutant could not increase the EGF-dependent ubiquitination and degradation of PLCepsilon. The EGF-dependent degradation of PLCepsilon was blocked in mouse embryonic fibroblast (MEF) cells derived from Siah1a/Siah2 double knockout mice, and the extrinsic expression of wild-type Siah1 restored the degradation of PLCepsilon, whereas the phosphorylation-deficient mutant did not. Siah1 expression abolished PLCepsilon-dependent potentiation of EGF-dependent cell growth. In addition, the expression of wild-type Siah1 in Siah1a/Siah2-double knockout MEF cells inhibited EGF-dependent cell growth, and this inhibition was abolished by PLCepsilon knockdown. Our results suggest that the Siah-dependent degradation of PLCepsilon plays a role in the regulation of growth factor-dependent cell growth.  相似文献   

18.
Phospholipase D (PLD) has been implicated in the signal transduction pathways initiated by several mitogenic protein tyrosine kinases. We demonstrate for the first time that most notably PLD2 and to a lesser extent the PLD1 isoform are tyrosine phosphorylated by c-Src tyrosine kinase via direct association. Moreover, epidermal growth factor induced tyrosine phosphorylation of PLD2 and its interaction with c-Src in A431 cells. Interaction between these proteins is via the pleckstrin homology domain of PLD2 and the catalytic domain of c-Src. Coexpression of PLD1 or PLD2 with c-Src synergistically enhances cellular proliferation compared with expression of either molecule. While PLD activity as a lipid-hydrolyzing enzyme is not affected by c-Src, wild-type PLDs but not catalytically inactive PLD mutants significantly increase c-Src kinase activity, up-regulating c-Src-mediated paxillin phosphorylation and extracellular signal-regulated kinase activity. These results demonstrate the critical role of PLD catalytic activity in the stimulation of Src signaling. In conclusion, we provide the first evidence that c-Src acts as a kinase of PLD and PLD acts as an activator of c-Src. This transmodulation between c-Src and PLD may contribute to the promotion of cellular proliferation via amplification of mitogenic signaling pathways.  相似文献   

19.
The phospholipase D (PLD) from Streptomyces chromofuscus belongs to the superfamily of PLDs. All the enzymes included in this superfamily are able to catalyze both hydrolysis and transphosphatidylation activities. However, S. chromofuscus PLD is calcium dependent and is often described as an enzyme with weak transphosphatidylation activity. S. chromofuscus PLD-catalyzed hydrolysis of phospholipids in aqueous medium leads to the formation of phosphatidic acid. Previous studies have shown that phosphatidic acid-calcium complexes are activators for the hydrolysis activity of this bacterial PLD. In this work, we investigated the influence of diacylglycerols (naturally occurring alcohols) as candidates for the transphosphatidylation reaction. Our results indicate that the transphosphatidylation reaction may occur using diacylglycerols as a substrate and that the phosphatidylalcohol produced can be directly hydrolyzed by PLD. We also focused on the surface pressure dependency of PLD-catalyzed hydrolysis of phospholipids. These experiments provided new information about PLD activity at a water-lipid interface. Our findings showed that classical phospholipid hydrolysis is influenced by surface pressure. In contrast, phosphatidylalcohol hydrolysis was found to be independent of surface pressure. This latter result was thought to be related to headgroup hydrophobicity. This work also highlights the physiological significance of phosphatidylalcohol production for bacterial infection of eukaryotic cells.  相似文献   

20.
In a wide variety of cells, phosphatidylcholine hydrolysis in response to diverse agents is catalyzed by phospholipase D (PLD) activities that are believed to be membrane-bound. Indeed, PLD has been detected in membrane fractions of several tissues and cells. We now demonstrate in various bovine tissue including lung, brain, spleen, heart, kidney, thymus, and liver as well as rat lung that a great majority of the detectable PLD activity is cytosolic. This cytosolic PLD activity differs from a less abundant membrane-bound isozyme by chromatographic mobilities on anion exchange and gel filtration columns, by substrate specificity, by substrate concentration dependence, and by divalent cation and detergent effects. Fractionation of the cytosol by anion exchange chromatography enhances PLD activity up to 20-fold, suggesting the presence in the cytosol of PLD inhibitory factor(s). We conclude that mammalian PLD exists in multiple forms and that appropriate selection of assay conditions is critical for observing PLD activity in the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号