首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 663 毫秒
1.
Plant species richness in central and northern European seminatural grasslands is often more closely linked to past than present habitat configuration, which is indicative of an extinction debt. In this study, we investigate whether signs of historical grassland management can be found in clear‐cuts after at least 80 years as coniferous production forest by comparing floras between clear‐cuts with a history as meadow and as forest in the 1870s in Sweden. Study sites were selected using old land‐use maps and data on present‐day clear‐cuts. Species traits reflecting high capacities for dispersal and persistence were used to explain any possible links between the plants and the historical land use. Clear‐cuts that were formerly meadow had, on average, 36% higher species richness and 35% higher richness of grassland indicator species, as well as a larger overall seed mass and lower anemochory, compared to clear‐cuts with history as forest. We suggest that the plants in former meadows never disappeared after afforestation but survived as remnant populations. Many contemporary forests in Sweden were managed as grasslands in the 1800s. As conservation of remaining grassland fragments will not be enough to reduce the existing extinction debts of the flora, these young forests offer opportunities for grassland restoration at large scales. Our study supports the concept of remnant populations and highlights the importance of considering historical land use for understanding the distribution of grassland plant species in fragmented landscapes, as well as for policy‐making and conservation.  相似文献   

2.
The preservation of remaining semi-natural grasslands in Europe has a high conservation priority. Previously, the effects of artificial fertilisation and grazing intensity on grassland animal and plant taxa have been extensively investigated. In contrast, little is known of the effects of tree and shrub cover within semi-natural grasslands and composition of habitats in the surrounding landscape on grassland taxa. We evaluated the effect that each of these factors has on species richness and community structure of vascular plants, butterflies, bumble bees, ground beetles, dung beetles and birds surveyed simultaneously in 31 semi-natural pastures in a farmland landscape in south-central Sweden. Partial correlation analyses showed that increasing proportion of the pasture area covered by shrubs and trees had a positive effect on species richness on most taxa. Furthermore, species richness of nectar seeking butterflies and bumble bees were negatively associated with grazing intensity as reflected by grass height. At the landscape level, species richness of all taxa decreased (butterflies and birds significantly so) with increasing proportion of urban elements in a 1-km2 landscape area centred on each pasture, while the number of plant and bird species were lower in landscapes with large proportion of arable fields. Our results differed markedly depending on whether the focus was on species richness or community structure. Canonical correspondence analyses (CCA) showed that the abundance of most taxa was ordered along a gradient describing tree cover within pastures and proportion of arable fields in the landscape. However, subsets of grassland birds and vascular plants, respectively, showed markedly different distribution patterns along axis one of the CCA. In contrast to current conservation policy of semi-natural pastures in Sweden, our results strongly advise against using a single-taxon approach (i.e., grassland vascular plants) to design management and conservation actions in semi-natural pastures. Careful consideration of conservation values linked to the tree and shrub layers in grasslands should always precede decisions to remove trees and shrubs on the grounds of promoting richness of vascular plants confined to semi-natural grasslands. Finally, the importance of landscape composition for mobile organisms such as birds entails that management activities should focus on the wider countryside and not exclusively on single pastures.  相似文献   

3.
Changes in land use during the last century have caused fragmentation and a reduction in area of many species-rich habitats in the hemiboreal region. We examined abundances of plant species and their occurrence in different habitats in south-east Sweden. We found 361 plant species in 146 sample sites, which represented 14 different types of habitat. Most species were rare and occurred only in a few habitats. Almost half of all species (49%) were found in one or two habitats. Of these, 99 species occurred in one habitat only. The habitats with largest number of restricted species, i.e. habitat specialists, were dry to mesic semi-natural grasslands and remnant habitats such as road verges and mid field islets. The occurrence of 52 species was analysed with respect to topography, top- and subsoil and land use history. Few of the 52 species were affected by aspect or type of topsoil. Subsoil affected nearly half of the species and habitats with a convex landform influenced occurrence of > 90% of the species. Seventeen species were positively associated with a long continuity of grassland management, whereas two species were associated with lack of management. Open grasslands that are encroached by trees and shrubs show a decline in species number. Deciduous forests, especially wet deciduous forests, have a potential for restoring moist to mesic grassland habitats. Small remnant habitats are important for many of the species restricted to semi-natural grasslands. These habitats may function as "rescue sites" for the species, which in turn may promote dispersal and increase likelihood of restoration success. Therefore, remnant habitats are important for maintaining and restoring species richness in rural landscapes.  相似文献   

4.
In this paper, we tested four hypotheses relative to edge and shape effects on ant communities: (i) forest edges have lower species richness than the remnant core; (ii) species richness increases with distance from the edge; (iii) irregularly shaped remnants have lower species richness than more regular remnants; (iv) there is a higher similarity of species composition between edge and core in irregular than in regular remnants. We sampled litter ant communities on the edge and core of ten remnants, in Viçosa, Minas Gerais, Brazil. Species richness was larger at the forest core than at the edges, although did not increase with distance from the edge. Species richness did not vary with shape complexity. The similarity of species composition between edge and core showed a decreasing trend with remnant area, and did not vary with shape complexity. The observed differences of species richness between forest core and edge may be due to higher harshness of edges, caused by environmental changes. The absence of relationship between species richness and distance from the edge might indicate the range of edge effects, which would be smaller than the smallest distance of core sampled. Therefore, edges would affect litter-dwelling ant species richness in a distance smaller than 50 m. The observation of species composition allowed us to notice an effect of fragmentation that would not be noticed if we were considering only species richness. Edge may serve as step to generalist species, which may use it to colonise forest remnants. Furthermore, small remnants are more colonisation-prone by such species, and have a more homogeneous species composition than large remnants.  相似文献   

5.
Ockinger E  Smith HG 《Oecologia》2006,149(3):526-534
During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6–10 ha) and one small (0.5–2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km2 landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at preserving landscapes with high proportions of the focal habitat.  相似文献   

6.
The Influence of Landscape Grain Size on Butterfly Diversity in Grasslands   总被引:6,自引:0,他引:6  
The relationship between butterfly diversity and both habitat and landscape variables was studied in two areas of southern Sweden. The habitat quality of the grasslands was similar in the two study areas but the landscape pattern differed in grain size and amount of grassland and forest. Using a transect survey method, a total of 3341 butterflies were observed and 30 taxa identified. We found that both habitat and landscape variables influenced the butterfly diversity of the investigated grasslands. Species composition differed markedly between the two study areas. A study area with a fine-grained landscape pattern, a high cover of semi-natural grassland and many forest edges had twice as many butterfly species but half the number of individuals compared with a coarser-grained study area with larger grasslands widely spread in a matrix of arable fields. The results of our study indicate that both habitat quality and landscape pattern have to be considered when developing conservation strategies for grassland butterflies.  相似文献   

7.
Temperate semi-natural grasslands are known for their high plant species richness at small spatial scales. We examined the variation in small-scale species richness in a sample of 63 sites from Swedish semi-natural grasslands, located as fragments in the modem landscape dominated by forest and agricultural land. Data were obtained from two spatial scales at each site. 1 dm2 and 4 m2. Using an analysis based on a Monte Carlo simulation, we found support for the species-pool hypothesis: a high species richness at the I dm- scale was associated with high species richness at the 4 m2 scale. The conclusion from this pattern analysis would, however, be considerably strengthened if we could reduce the likelihood that other mechanisms than sampling from species pools of unequal size influence the pattern of small-scale species richness. Additional analyses were made in order to identify such mechanisms. We examined whether four putative key traits: seed size, seed production, plant size and reproductive allocation were different among species at comparatively species-rich vs species-poor I dm' plots. We found only a little evidence for such differences. There was a weak tendency that species in the plots with high species richness possessed larger (and fewer) seeds than species from species-poor plots. Our results are congruent with the main prediction of the species pool model: variation in small-scale species richness (1 dm2- scale) is basically a result of sampling from unequally sized community species pools (4 m2 scale). Variation in species richness between the 4 nr semi-natural grassland "patches" may thus be sought for among mechanisms operating al larger spatial scales than 4 m2. We briefly discuss such mechanisms, based on other studies performed in the same study area.  相似文献   

8.
Metapopulation theory predicts that species richness and total population density of habitat specialists increase with increasing area and regional connectivity of the habitat. To test these predictions, we examined the relative contributions of habitat patch area, connectivity of the regional habitat network and local habitat quality to species richness and total density of butterflies and day-active moths inhabiting semi-natural grasslands. We studied butterflies and moths in 48 replicate landscapes situated in southwest Finland, including a focal patch and the surrounding network of other semi-natural grasslands within a radius of 1.5 km from the focal patch. By applying the method of hierarchical partitioning, which can distinguish between independent and joint contributions of individual explanatory variables, we observed that variables of the local habitat quality (e.g. mean vegetation height and nectar plant abundance) generally showed the highest independent effect on species richness and total density of butterflies and moths. Habitat area did not show a significant independent contribution to species richness and total density of butterflies and moths. The effect of habitat connectivity was observed only for total density of the declining butterflies and moths. These observations indicate that the local habitat quality is of foremost importance in explaining variation in species richness and total density of butterflies and moths. In addition, declining butterflies and moths have larger populations in well-connected networks of semi-natural grasslands. Our results suggest that, while it is crucial to maintain high-quality habitats by management, with limited resources it would be appropriate to concentrate grassland management and restoration to areas with well-connected grassland networks in which the declining species currently have their strongest populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity.  相似文献   

10.
Worldwide, intense forest fragmentation has resulted in mosaic landscapes in which biodiversity and a number of important ecological processes are threatened. Insect parasitism is a vital component of herbivore population regulation, hence the study of parasitism and parasitoid richness in fragmented forests embedded in an agricultural matrix is relevant from conservation and management perspectives. Here, we investigated through experimental field exposure of the leafminer Liriomyza commelinae (Diptera: Agromyzidae) the effects of forest remnant size and edge/interior location on parasitism, species richness and parasitoid community composition. Two consecutive experiments were performed in which pots with mined plants were placed in remnants of Chaco Serrano forests in Central Argentina. Parasitism levels (on average above 50 %) and number of parasitoids species (in total, 20 species) were independent of forest remnant size. However, higher parasitism and species richness were found at the forest edge compared with the interior although the differences in species richness failed to reach statistical significance. Parasitoid community composition was not related to forest size whereas assemblages from interior habitats showed closer similarity than those from the edges. The results suggest forest remnants could play an important role as reservoirs of parasitoids with potential to control crop pests, a possibility heightened by the positive edge effects which could facilitate the transfer of this valuable ecosystem service to the adjacent cultivated land.  相似文献   

11.
Landscape effects on butterfly assemblages in an agricultural region   总被引:11,自引:0,他引:11  
We examined the butterfly fauna at 62 sites in southeastern Sweden within a region exhibiting high variation in the landscape surrounding the studied grasslands. The landscape varied from an intensively-managed agricultural landscape with a large amount of open fields to a landscape with a high amount of deciduous forest/semi-natural grassland. We made 12 179 observations of 57 species of butterflies. The amount of neighbouring deciduous forest/semi-natural grassland, with >25% tree and bush cover, was the most important environmental factor explaining the variation in the butterfly assemblages. Landscape analyses at three different spatial scales showed that the variation in butterfly assemblages could be explained only at the largest scale (radius 5000 m) and not at the smaller ones (radii 500 and 2000 m).
Logistic regressions were used to predict presence/absence of butterfly species. Our study indicated that there may be critical thresholds for the amount of habitat at the landscape scale for several butterfly species as well as for species richness. For Melitaea athalia , there was a sharp increase in occupancy probability between 3 and 10% deciduous forests/semi-natural grasslands at the 5000-m scale. For 12 other species, the value for 50% probability of occurrence varied between 2 and 12% deciduous forest/semi-natural grassland. Species which had high occupancy probabilities in landscapes with a low amount of surrounding deciduous forests/semi-natural grasslands were significantly more mobile than others.
Our study highlights the importance of applying a landscape perspective in conservation management, and that single-patch management might fail in maintaining a diverse butterfly assemblage.  相似文献   

12.
The diversity of fungi in semi-natural grasslands is poorly known, partly due to difficulties in species identification in the field but also because there are few specialists available. Diversity assessments of grassland fungi would be facilitated if a potential surrogate group for fungal diversity could be identified. The aim of this study was to assess whether plant diversity patterns in semi-natural grasslands are congruent with diversity patterns of Waxcap (Hygrocybe spp.) fungi. Waxcaps, together with several other groups of fungi (e.g. the genera Entoloma, Dermoloma, Camarophyllopsis, and the families Clavariaceae and Geoglossaceae) have habitat requirements similar to many plants typical for semi-natural grasslands and they are all threatened by ceased management and nutrient enrichment. Diversity data from 31 semi-natural grasslands in southern Sweden were used to examine if there is congruence in species richness, nestedness, β-diversity and species composition between plants and Hygrocybe fungi. Species richness of Hygrocybe was significantly positively correlated with plant richness, although the relationship was not strong (r2=0.14). Both plant and Hygrocybe species composition was significantly nested, i.e. species-poor sites contain a subset of species from species-rich sites, which suggests that rare species mostly occur in the species-rich sites. A species similarity analysis between the grassland sites showed that there is low overlap between species composition of plants and Hygrocybe, indicating that conservation decisions based solely on plants may not fulfil the requirements of the Hygrocybe species. The conclusion is that there is low congruence between plant and Hygrocybe species diversity, making plants a poor surrogate group for Hygrocybe fungi, and probably also for other grassland fungi.  相似文献   

13.
Questions: Which factors influence the persistence of vascular grassland plants in long‐abandoned (at least 50 yr) arable fields and meadows? What might be the implications of current levels of species richness on abandoned arable fields and meadows for future restoration? Location: Forested highlands of Kilsbergen, south central Sweden. Methods: The abundance of all vascular plant species was investigated in three habitat types: former arable fields, hay meadows and outlands (pastures) at 27 farms, abandoned for either approximately 50 yr or 90 yr. Time since abandonment, tree cover, soil depth, degree of soil podsol development, size of the infield area and two measures of connectivity were used as predictors for species richness and species composition. Results: Former outland had denser tree cover, fewer species and fewer grassland species than former arable fields and hay meadows, irrespective of time since abandonment. Former hay meadows and arable fields with a longer time since abandonment were less rich in species, more wooded and had greater podsolization than meadows and fields abandoned at a later stage. Species richness was higher in hay meadows and arable fields at farms with larger infield area and deeper soils compared with farms with smaller infield area and shallower soils. The greatest richness of species and most open habitat were former arable fields at larger farms abandoned 50 yr before the study. Former arable fields had the highest number of grassland species. Conclusion: After 50 yr of abandonment, former arable fields were the most important remnant habitats for grassland species and may be a more promising target for restoration than formerly managed grasslands.  相似文献   

14.
We contrasted traditionally used indicators of service provision quality, such as overall species richness and growth form composition, to three more specific functional properties: functional diversity, functional intensity, and functional stability. We defined flower colour as a functional trait perceived differently by humans and insect pollinators, and used user specific colour richness, flower size, and species richness within colour group as indicators of these three properties. We asked (1) do field margins and road verges provide flower-based ecosystem services with the quality of permanent grasslands; and (2) do traditional and detailed functional indicators of service provision quality agree on the service quality ranking of habitats?In an agricultural landscape of central and south-eastern Estonia (115 ÿ 95 km area, centroid 26°49⿲43⿳ and 58°54⿲49⿳) we sampled 87 field margins and 111 road verges as linear grassland-substitution habitats, and 84 permanent grasslands to scale their service quality.Linear habitats generally provided service of lower quality than permanent grasslands, but detailed indicators showed less evident contrast among habitat types than the overall species richness and stronger contrast than the proportion of forbs. Detailed indices, however, had strong seasonal dynamics to take into account. Vegetation in the first year field margins had greater colour richness (functional diversity) and species richness within colour groups (functional stability), but the smallest flower size (functional intensity), in contrast to road verges. By the third year of succession, field margins had become more similar to road verges. Indication of service provision quality differed between humans and pollinators, but their estimates were correlated across habitats.We showed that (1) combinations of specific service quality indicators provide more adequate information than generalized richness or growth form system, and (2) single grassland surrogate habitat type is an insufficient service providing substitute for permanent grasslands, although a mosaic of these habitats might be more efficient. Therefore, remnant fragments of semi-natural grasslands should receive top priority attention for conservation and restoration, particularly in agriculture dominated landscapes.  相似文献   

15.
Although semi-natural grasslands in Europe are declining there is often a time delay in the local extinction of grassland species due to development of remnant populations, i.e., populations with an extended persistence despite a negative growth rate. The objectives of this study were to examine the occurrence of remnant populations after abandonment of semi-natural grasslands and to examine functional traits of plants associated with the development of remnant populations. We surveyed six managed semi-natural grasslands and 20 former semi-natural grasslands where management ceased 60–100 years ago, and assessed species response to abandonment, assuming a space-for-time substitution. The response of species was related to nine traits representing life cycle, clonality, leaf traits, seed dispersal and seed mass. Of the 67 species for which data allowed analysis, 44 species declined after grassland abandonment but still occurred at the sites, probably as remnant populations. Five traits were associated with the response to abandonment. The declining but still occurring species were characterized by high plant height, a perennial life form, possession of a perennial bud bank, high clonal ability, and lack of dispersal attributes promoting long-distance dispersal. Traits allowing plants to maintain populations by utilizing only a part of their life cycle, such as clonal propagation, are most important for the capacity to develop remnant populations and delay local extinction. A considerable fraction of the species inhabiting semi-natural grasslands maintain what is most likely remnant populations after more than 60 years of spontaneous succession from managed semi-natural grasslands to forest.  相似文献   

16.
Semi-natural grasslands can support diverse faunal and floral communities, including grassland birds, beneficial insects, and native wildflowers. Monitoring biodiversity of this type of ecosystem is important to assess abundance and richness of grassland-associated species, evaluate success of establishing grasslands, and to assess overall ecosystem health. We tested butterflies as surrogates for birds and plants to assess establishment success of semi-natural grassland buffers in north-central Mississippi using Spearman rank correlation (Spearman’s ρ). Disturbance and grassland butterfly guilds were generally not suitable surrogates for grassland bird metrics, non-grassland bird metrics, or nest density metrics. Butterflies did have consistent positive correlations with plant species richness and forb metrics, as well as consistent negative correlations with grass metrics, but these correlations were generally smaller than what is considered suitable to serve as surrogates. In general, butterflies were not suitable surrogates for birds or plants in semi-natural grassland buffers.  相似文献   

17.

Questions

Small, remnant habitats embedded in degraded, human-dominated landscapes are generally not a priority in conservation, despite their potential role in supporting landscape-scale biodiversity. To warrant their inclusion in conservation management and policy, we question under which conditions they may exhibit the largest conservation value.

Location

Nine landscapes spread across the counties of Stockholm and Södermanland, Sweden.

Methods

Per landscape, plant communities were surveyed in 6 and 12 1 × 1 m2 plots across large, intact semi-natural grasslands and small remnant grasslands, respectively. These two contrasting grassland types served as a model system. A topsoil sample was taken in each plot to determine habitat quality in terms of soil pH, plant-available P, and C:N ratio. We used a joint species distribution model to analyse the extent to which grassland type and habitat quality define and predict resident community diversity and composition, including whether they support grassland specialists.

Results

At the landscape scale, the combined remnant grasslands sustained diverse plant communities which did include a significant subset of habitat specialists. Yet, the contribution of individual remnants clearly varied with local-scale habitat quality; soil phosphorus availability lowered plot-level species richness, mostly by constraining the occurrence of grassland specialists. Semi-natural grassland communities were comparatively insensitive to variation in soil phosphorus availability.

Conclusions

The combined habitat amount and the significant number of habitat specialists sustained by remnant grasslands with high habitat quality, shows they can represent a valuable resource to support landscape-scale biodiversity conservation. This offers no wildcard to neglect the continued biotic and abiotic threats on semi-natural grassland plant diversity such as chronic and accumulating P eutrophication, discontinuation of management or poor matrix permeability, as semi-natural grasslands harbour the majority of habitat specialists, while sourcing surrounding remnant grassland communities.
  相似文献   

18.
Emerging infectious diseases are considered to be a growing threat to human and wildlife health. Such diseases might be facilitated by anthropogenic land-use changes that cause novel juxtapositions of different habitats and species and result in new interchanges of vectors, diseases, and hosts. To search for such effects in tropical Australia, we sampled mosquito populations across anthropogenic disturbance gradients of grassland, artificial rainforest edge, and rainforest interior. From >15,000 captured mosquitoes, we identified 26 species and eight genera. Surprisingly, there was no significant difference in community composition or species richness between forest edges and grasslands, but both differed significantly from rainforest interiors. Mosquito species richness was elevated in grasslands relative to the rainforest habitats. Seven species were unique to grasslands and edges, with another 13 found across all habitats. Among the three most abundant species, Culex annulirostris occurred in all habitat types, whereas Verrallina lineata and Cx. pullus were more abundant in forest interiors. Our findings suggest that the creation of anthropogenic grasslands adjacent to rainforests may increase the susceptibility of species in both habitats to transmission of novel diseases via observable changes and mixing of the vector community on rainforest edges.  相似文献   

19.
The Afromontane region of South Africa is characterised by numerous small, remnant forests in a grassland matrix. The edges, or ecotones between forests and grasslands are usually sharp (typically just over a few metres) and are mainly maintained by both natural and, more recently, anthropogenic fires. We investigated epigaeic amphipod, carabid and ant distribution patterns across Afromontane forest/grassland ecotones and found little evidence to support the biological edge effect. Five of the fifty-two sampled species however, did increase significantly in abundance at the ecotone. Among these was a very distinct edge species, the amphipod Talistroides africana. Overall, carabids were more abundant and species rich in forests while for ants it was in the grasslands. Ants and carabids were both more abundant and species rich in spring and summer than in autumn and winter. More interestingly, the abundance and species richness patterns across the ecotone did not change with the passing of the seasons. We argue that a conservation strategy for the Afromontane forest patches must also incorporate the surrounding grassland. The grassland habitat is often perceived as less valuable than forest and, as a consequence, is subject to many anthropogenic disturbances such as fragmentation, cattle grazing and afforestation. Protecting grasslands around forest patches not only conserves the rich ant diversity, but also conserves the biota in the forests and at the edges, and would therefore be more meaningful in terms of the overall conservation of Afromontane biodiversity.  相似文献   

20.
Increasing landscape complexity can mitigate negative effects of agricultural intensification on biodiversity by offering resources complementary to those provided in arable fields. In particular, grazed semi-natural grasslands and woody elements support farmland birds, but little is known about their relative effects on bird diversity and community composition. In addition, the relative importance of local habitat versus landscape composition remains unclear. We investigated how the presence of semi-natural grasslands, the number of woody elements and the composition of the wider agricultural landscape affect bird species richness, true diversity (exponential Shannon diversity) and species composition. Bird communities were surveyed four times on 16 paired transects of 250 m each with 8 transects placed between a crop field and a semi-natural grassland and 8 transects between two crop fields with no semi-natural grasslands in the vicinity. The number of woody elements around transects was selected as an important predictor in all models, having a positive effect on species richness and true diversity, while the local presence of semi-natural grasslands was not selected in the best models. However, species richness and true diversity increased with increasing cover of ley and semi-natural grasslands, whereas species composition was modified by the coverage of winter wheat at the landscape scale. Furthermore, bird species richness, true diversity and species composition differed between sampling dates. As bird diversity benefited from woody elements, rather than from the local presence of semi-natural grasslands as such, it is important to maintain woody structures in farmland. However, the positive effect of grassland at the landscape scale highlights the importance of habitat variability at multiple scales. Because species richness and true diversity were affected by different landscape components compared to species composition, a mosaic of land-use types is needed to achieve multiple conservation goals across agricultural landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号