首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Combining molecular cytogenetics and phylogenetic modelling of chromosome number change can shed light on the types of evolutionary changes that may explain the haploid numbers observed today. Applied to the monocot family Araceae, with chromosome numbers of 2n = 8 to 2n = 160, this type of approach has suggested that descending dysploidy has played a larger role than polyploidy in the evolution of the current chromosome numbers. To test this, we carried out molecular cytogenetic analyses in 14 species from 11 genera, using probes for telomere repeats, 5S rDNA and 45S rDNA and a plastid phylogenetic tree covering the 118 genera of the family, many with multiple species. We obtained new chromosome counts for six species, modelled chromosome number evolution using all available counts for the family and carried out fluorescence in situ hybridization with three probes (5S rDNA, 45S rDNA and Arabidopsis‐like telomeres) on 14 species with 2n = 14 to 2n = 60. The ancestral state reconstruction provides support for a large role of descending dysploidy in Araceae, and interstitial telomere repeats (ITRs) were detected in Anthurium leuconerum, A. wendlingeri and Spathyphyllum tenerum, all with 2n = 30. The number of ITR signals in Anthurium (up to 12) is the highest so far reported in angiosperms, and the large repeats located in the pericentromeric regions of A. wendlingeri are of a type previously reported only from the gymnosperms Cycas and Pinus. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 15–26.  相似文献   

2.
The karyotypes of four South American species of Cestrum (C. capsulare,C. corymbosum,C. laevigatum and C. megalophylum) were studied using conventional staining, C-CMA/DAPI chromosome banding and FISH with 45S and 5S rDNA probes. The karyotypes showed a chromosome number of 2n = 2x = 16, with metacentric chromosomes, except for the eighth submeta- to acrocentric pair. Several types of heterochromatin were detected, which varied in size, number, distribution and base composition. The C-CMA(+) bands and 45S rDNA were located predominantly in terminal regions. The C-CMA (+) /DAPI (+) bands appeared in interstitial and terminal regions, and the C-DAPI (+) bands were found in all chromosome regions. The 5S rDNA sites were observed on the long arm of pair 8 in all species except C. capsulare, where they were found in the paracentromeric region of the long arm of pair 4. The differences in band patterns among the species studied here, along with data from other nine species reported in the literature, suggest that the bands are dispersed in an equilocal and non-equilocal manner and that structural rearrangements can be responsible for internal karyotype diversification. However, it is important to point out that the structural changes involving repetitive segments did not culminate in substantial changes in the general karyotype structure concerning chromosome size and morphology.  相似文献   

3.

Background and Aims

For 84 years, botanists have relied on calculating the highest common factor for series of haploid chromosome numbers to arrive at a so-called basic number, x. This was done without consistent (reproducible) reference to species relationships and frequencies of different numbers in a clade. Likelihood models that treat polyploidy, chromosome fusion and fission as events with particular probabilities now allow reconstruction of ancestral chromosome numbers in an explicit framework. We have used a modelling approach to reconstruct chromosome number change in the large monocot family Araceae and to test earlier hypotheses about basic numbers in the family.

Methods

Using a maximum likelihood approach and chromosome counts for 26 % of the 3300 species of Araceae and representative numbers for each of the other 13 families of Alismatales, polyploidization events and single chromosome changes were inferred on a genus-level phylogenetic tree for 113 of the 117 genera of Araceae.

Key Results

The previously inferred basic numbers x = 14 and x = 7 are rejected. Instead, maximum likelihood optimization revealed an ancestral haploid chromosome number of n = 16, Bayesian inference of n = 18. Chromosome fusion (loss) is the predominant inferred event, whereas polyploidization events occurred less frequently and mainly towards the tips of the tree.

Conclusions

The bias towards low basic numbers (x) introduced by the algebraic approach to inferring chromosome number changes, prevalent among botanists, may have contributed to an unrealistic picture of ancestral chromosome numbers in many plant clades. The availability of robust quantitative methods for reconstructing ancestral chromosome numbers on molecular phylogenetic trees (with or without branch length information), with confidence statistics, makes the calculation of x an obsolete approach, at least when applied to large clades.  相似文献   

4.
Domestic buffaloes are divided into two group based on cytogenetic characteristics and habitats: the “river buffaloes” with 2n = 50 and the “swamp buffaloes”, 2n = 48. Nevertheless, their hybrids are viable, fertile and identified by a 2n = 49. In order to have a better characterization of these different cytotypes of buffaloes, and considering that NOR-bearing chromosomes are involved in the rearrangements responsible for the karyotypic differences, we applied silver staining (Ag-NOR) and performed fluorescent in situ hybridization (FISH) experiments using 18S rDNA as probe. Metaphases were obtained through blood lymphocyte culture of 21 individuals, including river, swamp and hybrid cytotypes. Ag-NOR staining revealed active NORs on six chromosome pairs (3p, 4p, 6, 21, 23, 24) in the river buffaloes, whereas the swamp buffaloes presented only five NOR-bearing pairs (4p, 6, 20, 22, 23). The F1 cross-breed had 11 chromosomes with active NORs, indicating expression of both parental chromosomes. FISH analysis confirmed the numerical divergence identified with Ag-NOR. This result is explained by the loss of the NOR located on chromosome 4p in the river buffalo, which is involved in the tandem fusion with chromosome 9 in this subspecies. A comparison with the ancestral cattle karyotype suggests that the NOR found on the 3p of the river buffalo may have originated from a duplication of ribosomal genes, resulting in the formation of new NOR sites in this subspecies.  相似文献   

5.
 Appearance and location of 45S rDNA and 5S rDNA signals were compared in chromosomes of nine species of the aneuploid Zamia and their taxonomically and phylogenetically closely related Ceratozamia mexicana. The 45S rDNA signal was detected in the proximal region of six chromosomes in Zamia angustifolia, Z. integrifolia, Z. pumila and Z. pygmaea (all 2n=16); in the proximal region of 6–14 chromosomes in Z. furfuracea, Z. loddigesii, Z. skinneri and Z. vazquezii (all 2n=18); and on the proximal region of 20 chromosomes in Z. muricata (2n=23). The 5S rDNA signals were commonly seen near the terminal region of the short arm of two metacentric chromosomes in the four species with 2n=16 and Z. furfuracea, Z. loddigesii and Z. vazquezii with 2n=18. Other 5S rDNA signals were seen near the terminal region of two terminal-centromeric chromosomes in Z. skinneri and near the terminal region of a metacentric and a telocentric chromosomes in Z. muricata. In contrast, those with 45S and 5S rDNA signals were exhibited in chromosomes of Ceratozamia mexicana in a different manner from those in the nine species of Zamia; the 45S rDNA signal in the terminal region of four metacentric and two submetacentric chromosomes and the 5S rDNA signal near the proximal region of two metacentric chromosomes. Received November 1, 1999 Accepted January 10, 2001  相似文献   

6.
A cytogenetic analysis of the sole Solea senegalensis was carried out using silver staining for the nucleolus organizer region (Ag-NOR) identification, one-color FISH for chromosomal mapping of 45S and 5S ribosomal DNAs (rDNAs), (GATA) n , and (TTAGGG) n , and two-color FISH for co-localization of both rDNAs. The Ag-NORs and the 45S rDNA were mapped to a medium-sized submetacentric chromosomal pair. Hybridization with the 5S rDNA showed a major signal on the short arm of a medium-sized submetacentric chromosome pair and a minor signal on a centromeric site of a small acrocentric chromosome pair. Differences in the Ag-NOR and 45S and 5S rDNAs FISH signal sizes were observed between homologous chromosomes and among individuals. A two-color FISH co-localized 45S and 5S rDNAs to a medium-sized submetacentric chromosomal pair. The hybridization with the telomeric (TTAGGG) n repeat displayed small signals at all chromosomal telomeres. Finally, the (GATA) n probe produced dispersed and small hybridization signals on all chromosome spreads, showing its ubiquitous existence in the genome. These results were compared with those from other Pleuronectiformes and discussed in terms of karyotype evolution.  相似文献   

7.
The genus Nothoscordum Kunth comprises approximately 20 species native to South America. Karyologically, the genus is remarkable for its large chromosomes and Robertsonian translocations. Variation in chromosome number has been recorded in a few polyploid species and it is unknown among diploids. This study presents the chromosome number and morphology of 53 individuals of seven populations of N. arenarium Herter (2n = 10). In addition, karyotype analyses after C-banding, staining with CMA and DAPI, and in situ hybridization with 5S and 45S rDNA probes were performed in six individuals from one population. All individuals exhibited 2n = 10 (6M + 4A), except for one tetraploid (2n = 20, 12M + 8A) and one triploid (2n = 15, 9M + 6A) plant. C-banding revealed the presence of CMA(+) /DAPI (-) heterochromatin in the short arm and in the proximal region of the long arm of all acrocentric chromosomes. The 45S rDNA sites co-localized with the CMA (+) regions of the acrocentrics short arms, while the 5S rDNA probe only hybridized with the subterminal region of a pair of metacentric chromosomes. A change in the pattern of CMA bands and rDNA sites was observed in only one individual bearing a reciprocal translocation involving the long arm of a metacentric and the long arm of an acrocentric chromosome. These data suggest that, despite isolated cases of polyploidy and translocation, the karyotype of N. arenarium is very stable and the karyotypic instability described for other species may be associated with their polyploid condition.  相似文献   

8.
Basic and molecular cytogenetic analyses were performed in specimens of Characidium cf. zebra from five collection sites located throughout the Tietê, Paranapanema and Paraguay river basins. The diploid number in specimens from all samples was 2n = 50 with a karyotype composed of 32 metacentric and 18 submetacentric chromosomes in both males and females. Constitutive heterochromatin was present at the centromeric regions of all chromosomes and pair 23, had additional interstitial heterochromatic blocks on its long arms. The nucleolar organizer regions (NORs) were located on the long arms of pair 23, while the 5S rDNA sites were detected in different chromosomes among the studied samples. One specimen from the Alambari river was a natural triploid and had two extra chromosomes, resulting in 2n = 77. The remarkable karyotypic similarity among the specimens of C. cf. zebra suggests a close evolutionary relationship. On the other hand, the distinct patterns of 5S rDNA distribution may be the result of gene flow constraints during their evolutionary history.  相似文献   

9.
Fluorescent in situ hybridization (FISH) is a molecular technique which enables the detection of nucleic acids in cells. DNA FISH is often used in cytogenetics and cancer diagnostics, and can detect aberrations of the genome, which often has important clinical implications. RNA FISH can be used to detect RNA molecules in cells and has provided important insights in regulation of gene expression. Combining DNA and RNA FISH within the same cell is technically challenging, as conditions suitable for DNA FISH might be too harsh for fragile, single stranded RNA molecules. We here present an easily applicable protocol which enables the combined, simultaneous detection of Xist RNA and DNA encoded by the X chromosomes. This combined DNA-RNA FISH protocol can likely be applied to other systems where both RNA and DNA need to be detected.  相似文献   

10.
Hatanaka T  Galetti PM 《Genetica》2004,122(3):239-244
A single NOR-bearing chromosome pair was identified by silver nitrate staining in a previous study of the fish Prochilodus argenteus from the S ã o Francisco River (MG, Brazil), with a third metacentric chromosome sporadically bearing active NOR. The present study focused on an analysis of the chromosomal localization of both the major (45S) and the minor (5S) rRNA genes using FISH. The use of the 18S rDNA probe confirmed the previous Ag-NOR sites interstitially located in a large metacentric pair and also identified up to three other sites located in the telomeric regions of distinct chromosomes, characterizing an interindividual variation of these sites. In addition, the 5S rDNA site was revealed adjacent to the major NOR site, identified at the end of the large Ag-NOR bearing metacentric chromosome. In a few metaphases, an additional weak hybridization signal was observed in a third chromosome, possibly indicating the presence of another 5S rDNA cluster. Despite a lower karyotype diversification (2n=54 and FN=108) often observed among species of Prochilodontidae, variations involving both 45S and 5S rRNA genes could play an important role in their chromosome diversification.  相似文献   

11.
In this study, we present a molecular phylogeny for the west Palaearctic Helicidae sensu lato based on sequence data from two mitochondrial (COI, 16S rDNA) and two nuclear (ITS-1, 18S rDNA) genes. Maximum likelihood analysis and Bayesian inference revealed well supported monophyletic clades partly conflicting traditional classifications. Based on these results, we propose the following system. The Western Palaearctic Helicidae s.l. consist of two families, Helicidae and Hygromiidae. Within the Helicidae, three well supported subfamilies can be recognised: the Helicinae, Ariantinae, and Helicodontinae. The Hygromiidae consist of three clades: the Hygromiinae, the Helicellinae, and a yet unnamed clade comprising the genera Sphincterochila and Cochlicella. We then used the phylogeny to study the evolution of anatomical, and ecological characters traditionally used for systematic classification. In the Helicidae s.l., two independent evolutionary transitions to life in xeric environments occurred, which allowed the occupation of new niches with a subsequent radiation of the Helicellinae-Cochlicella/Sphincterochila clade and the Helicinae. Whereas, the multiplication of the Glandulae mucosae is a synapomorphy of the Hygromiidae, the lovedart sac apparatus is present in all groups and thus, the trait cannot provide a synapomorphy for either families or subfamilies. Additionally, we evaluated the use of structural molecular genetic characters for taxonomic assessment. The presence of an unique loop region of the 16S rDNA gene and a short tandem repeat in the ITS-1 region provide independent evidence for the monophyly of these major two groups, and can be used for preliminary classification.  相似文献   

12.
Polypteridae is a family of archaic freshwater African fish that constitute an interesting subject for the study of the karyological evolution in vertebrates, on account of their primitive morphological characters and peculiar relationships with lower Osteichthyans. In this paper, a cytogenetic analysis on twenty specimens of both sexes of Polypterus ornatipinnis the ornate "bichir", coming from the Congo River basin, was performed by using both classical and molecular techniques. The karyotypic formula (2n=36; FN=72) was composed of 26 M+10 SM. The Alu I banding, performed to characterize heterochromatin in this species, was mainly centromeric. Both the chromosome location of the ribosomal 5S and 18S rRNA genes were examined by using Ag-NOR, classical C-banding, CMA(3) staining and FISH. CMA(3) marked all centromerical regions and showed the presence of two GC rich regions on the p arm of the chromosome pair n°1 and on the q arm of the pair n°14. Staining with Ag-NOR marked the only telomeric region of the chromosome n°1 p arm. After PCR, the 5S rDNA in this species was cloned, sequenced and analyzed. In the 665bp 5S rDNA sequence of P.ornatipinnis, a conserved 120bp gene region for the 5S rDNA was identified, followed by a non-transcribed variable spacer (NTS) which included simple repeats, microsatellites and a fragment of a non-LTR retrotransposon R-TEX. FISH with 5S rDNA marked the subtelomeric region of the q arm of the chromosome pair n°14, previously marked by CMA(3). FISH with 18S rDNA marked the telomeric region of the p arm of the pair n°1, previously marked both by Ag-NOR and CMA(3). The (GATA)(7) repeats marked the telomeric regions of all chromosome pairs, with the exclusion of the n°1, n°3 and n°14; hybridization with telomeric probes (TTAGGG)(n) showed signals at the end of all chromosomes. Karyotype evolution in Polypterus genus was finally discussed, including the new data obtained.  相似文献   

13.
In this work, the first cytogenetic data on Neotropical Collyrinae is provided, by way of their karyotypes, C-banding and ribosomal genes (rDNA) localization using fluorescence in situ hybridization (FISH). The two species analysed, Ctenostoma (Procephalus) ornatum ornatum (male) and Ctenostoma (Euctenostoma) rugosum(female) showed, respectively, a diploid number of 17 and 18 chromosomes. C. ornatum ornatum has a multiple sex chromosome system ( n=7 + X1X2Y), and mitotic and meiotic metaphase cells showed rDNA gene labelling in the smallest autosomal pair. In this species, no C-bands were obtained, while C. rugosum seems to exhibit centromeric and/or interstitial C-bands in almost all chromosomes. The observation of a multiple sex chromosome system in Ctenostomini ensured the appearance of this characteristic in the hypothetical ancestral of Collyrinae and Cicindelini. The subfamily Collyrinae is not uniform in what concerns diploid chromosome number and rDNA gene localization, because C. ornatum ornatum possesses a lower chromosome number and autosomal rDNA genes when compared with the other Collyrinae species studied ( Neocollyris spp.). Independent events leading to the reduction in chromosome number might have taken place during the split of the Collyrinae into the tribes Ctenostomini and Collyrini.  相似文献   

14.
The phylogenetic placement of the monotypic crab plover Dromasardeola (Aves, Charadriiformes) remains controversial. Phylogenetic analysis of anatomical and behavioral traits using phenetic and cladistic methods of tree inference have resulted in conflicting tree topologies, suggesting a close association of Dromas to members of different suborders and lineages within Charadriiformes. Here, we revisited the issue by applying Bayesian and parsimony methods of tree inference to 2,012 anatomical and 5,183 molecular characters to a set of 22 shorebird genera (including Turnix). Our results suggest that Bayesian analysis of anatomical characters does not resolve the phylogenetic relationship of shorebirds with strong statistical support. In contrast, Bayesian and parsimony tree inference from molecular data provided much stronger support for the phylogenetic relationships within shorebirds, and support a sister relationship of Dromas to Glareolidae (pratincoles and coursers), in agreement with previously published DNA-DNA hybridization studies.  相似文献   

15.
The chromosomal locations of the 45S (18S-5.8S-26S) and 5S ribosomal DNA in theBrachyscome lineariloba complex and two related species have been determined by the use of multicolor fluorescencein situ hybridization (McFISH). TheBrachyscome lineariloba complex includes five cytodemes with 2n=4, 8, 10, 12 and 16. Each of the 5S and 45S rDNA loci occurs at two sites on chromosomes in cytodemes with 2n=4. While in cytodemes with 2n=8, 10, 12 and 16, the number of 5S rDNA sites increases from four to eight paralleled to the genomic addition of diploid (4 chromosomes) or haploid (2 chromosomes) dosage. Of the 5S rDNA sites, only one pair is major, except for the cytodeme with 2n=10. The remaining 5S rDNA sites are minor and seem to have reduced the unit number of the 5S rDNA during the successive genomic additions. The 45S rDNA site is detected only at two nucleolar organizing regions in all cytodemes regardless of successive genomic addition. The loss or diminution of 45S rDNA sequences seem to have proceeded more rapidly than 5S rDNA sequences in theB. lineariloba complex.  相似文献   

16.

Backgrounds and Aims

The spatial separation of stigmas and anthers (herkogamy) in flowering plants functions to reduce self-pollination and avoid interference between pollen dispersal and receipt. Little is known about the evolutionary relationships among the three main forms of herkogamy – approach, reverse and reciprocal herkogamy (distyly) – or about transitions to and from a non-herkogamous condition. This problem was examined in Exochaenium (Gentianaceae), a genus of African herbs that exhibits considerable variation in floral morphology, including the three forms of herkogamy.

Methods

Using maximum parsimony and maximum likelihood methods, the evolutionary history of herkogamic and non-herkogamic conditions was reconstructed from a molecular phylogeny of 15 species of Exochaenium and four outgroup taxa, based on three chloroplast regions, the nuclear ribosomal internal transcribed spacer (ITS1 and 2) and the 5·8S gene. Ancestral character states were determined and the reconstructions were used to evaluate competing models for the origin of reciprocal herkogamy.

Key results

Reciprocal herkogamy originated once in Exochaenium from an ancestor with approach herkogamy. Reverse herkogamy and the non-herkogamic condition homostyly were derived from heterostyly. Distylous species possessed pendent, slightly zygomorphic flowers, and the single transition to reverse herkogamy was associated with the hawkmoth pollination syndrome. Reductions in flower size characterized three of four independent transitions from reciprocal herkogamy to homostyly.

Conclusions

The results support Lloyd and Webb''s model in which distyly originated from an ancestor with approach herkogamy. They also demonstrate the lability of sex organ deployment and implicate pollinators, or their absence, as playing an important role in driving transitions among herkogamic and non-herkogamic conditions.  相似文献   

17.
Background and Aims The evolution of interspecific reproductive barriers is crucial to understanding species evolution. This study examines the contribution of transitions between self-compatibility (SC) and self-incompatibility (SI) and genetic divergence in the evolution of reproductive barriers in Dendrobium, one of the largest orchid genera. Specifically, it investigates the evolution of pre- and postzygotic isolation and the effects of transitions between compatibility states on interspecific reproductive isolation within the genus.Methods The role of SC and SI changes in reproductive compatibility among species was examined using fruit set and seed viability data available in the literature from 86 species and ∼2500 hand pollinations. The evolution of SC and SI in Dendrobium species was investigated within a phylogenetic framework using internal transcribed spacer sequences available in GenBank.Key Results Based on data from crossing experiments, estimations of genetic distance and the results of a literature survey, it was found that changes in SC and SI significantly influenced the compatibility between species in interspecific crosses. The number of fruits produced was significantly higher in crosses in which self-incompatible species acted as pollen donor for self-compatible species, following the SI × SC rule. Maximum likelihood and Bayesian tests did not reject transitions from SI to SC and from SC to SI across the Dendrobium phylogeny. In addition, postzygotic isolation (embryo mortality) was found to evolve gradually with genetic divergence, in agreement with previous results observed for other plant species, including orchids.Conclusions Transitions between SC and SI and the gradual accumulation of genetic incompatibilities affecting postzygotic isolation are important mechanisms preventing gene flow among Dendrobium species, and may constitute important evolutionary processes contributing to the high levels of species diversity in this tropical orchid group.  相似文献   

18.

Background and Aims

In the genus Anemone two small groups of taxa occur with the highest ploidy levels 2n = 6x = 48, belonging to the closely related clades: the montane/alpine Baldensis clade and the more temperate Multifida clade. To understand the formation of polyploids within these groups, the evolution of allohexaploid A. baldensis (AABBDD, 2n = 6x = 48) from Europe and allotetraploid Anemone multifida (BBDD, 2n = 4x = 32) from America was analysed.

Methods

Internal transcribed spacer and non-transcribed spacer sequences were used as molecular markers for phylogenetic analyses. Cytogenetic studies, including genomic in situ hybridization with genomic DNA of potential parental species as probe, fluorescence in situ hybridization with 5S and 18S rDNA as probes and 18S rDNA restriction analyses, were used to identify the parental origin of chromosomes and to study genomic changes following polyploidization.

Key Results

This study shows that A. multifida (BBDD, 2n= 4x = 32) and A. baldensis (AABBDD, 2n = 6x = 48) are allopolyploids originating from the crosses of diploid members of the Multifida (donor of the A and B subgenomes) and Baldensis groups (donor of the D subgenome). The A and B subgenomes are closely related to the genomes of A. sylvestris, A. virginiana and A. cylindrica, indicating that these species or their progeny might be the ancestral donors of the B subgenome of A. multifida and A and B subgenomes of A. baldensis. Both polyploids have undergone genomic changes such as interchromosomal translocation affecting B and D subgenomes and changes at rDNA sites. Anemone multifida has lost the 35S rDNA loci characteristic of the maternal donor (B subgenome) and maintained only the rDNA loci of the paternal donor (D subgenome).

Conclusions

It is proposed that A. multifida and A. baldensis probably had a common ancestor and their evolution was facilitated by vegetation changes during the Quaternary, resulting in their present disjunctive distribution.  相似文献   

19.
20.
In this work, we examined the genetic diversity and evolution of the WAG-2 gene based on new WAG-2 alleles isolated from wheat and its relatives. Only single nucleotide polymorphisms (SNP) and no insertions and deletions (indels) were found in exon sequences of WAG-2 from different species. More SNPs and indels occurred in introns than in exons. For exons, exons+introns and introns, the nucleotide polymorphism π decreased from diploid and tetraploid genotypes to hexaploid genotypes. This finding indicated that the diversity of WAG-2 in diploids was greater than in hexaploids because of the strong selection pressure on the latter. All dn/ds ratios were < 1.0, indicating that WAG-2 belongs to a conserved gene affected by negative selection. Thirty-nine of the 57 particular SNPs and eight of the 10 indels were detected in diploid species. The degree of divergence in intron length among WAG-2 clones and phylogenetic tree topology suggested the existence of three homoeologs in the A, B or D genome of common wheat. Wheat AG-like genes were divided into WAG-1 and WAG-2 clades. The latter clade contained WAG-2, OsMADS3 and ZMM2 genes, indicating functional homoeology among them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号