首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The energetic contribution of complex salt bridges, in which one charged residue (anchor residue) forms salt bridges with two or more residues simultaneously, has been suggested to have importance for protein stability. Detailed analysis of the net energetics of complex salt bridge formation using double- and triple-mutant cycle analysis revealed conflicting results. In two cases, it was shown that complex salt bridge formation is cooperative, i.e., the net strength of the complex salt bridge is more than the sum of the energies of individual pairs. In one case, it was reported that complex salt bridge formation is anti-cooperative. To resolve these different findings, we performed analysis of the geometries of salt bridges in a representative set of structures from the PDB and found that over 87% of all complex salt bridges anchored by Arg/Lys have a geometry such that the angle formed by their Calpha atoms, Theta, is <90 degrees . This preferred geometry is observed in the two reported instances when the energetics of complex salt bridge formation is cooperative, while in the reported anti-cooperative complex salt bridge, Theta is close to 160 degrees . Based on these observations, we hypothesized that complex salt bridges are cooperative for Theta < 90 degrees and anti-cooperative for 90 degrees < Theta < 180 degrees . To provide a further experimental test for this hypothesis, we engineered a complex salt bridge with Theta = 150 degrees into a model protein, the activation domain of human procarboxypeptidase A2 (ADA2h). Experimentally derived stabilities of the ADA2h variants allowed us to show that the complex salt bridge in ADA2h is anti-cooperative.  相似文献   

2.
Marti DN  Bosshard HR 《Biochemistry》2004,43(39):12436-12447
The pH-dependent stability of a protein is strongly affected by electrostatic interactions between ionizable residues in the folded as well as unfolded state. Here we characterize the individual contributions of charged Glu and His residues to stability and determine the NMR structure of the designed, heterodimeric leucine zipper AB consisting of an acidic A chain and a basic B chain. Thermodynamic parameters are compared with those of the homologous leucine zipper AB(SS) in which the A and B chains are disulfide-linked. NMR structures of AB based on (1)H NMR data collected at 600 MHz converge, and formation of the same six interchain salt bridges found previously in disulfide-linked AB(SS) [Marti, D. N., and Bosshard, H. R. (2003) J. Mol. Biol. 330, 621-637] is indicated. While the structures of AB and AB(SS) are very similar, their pH-dependent relative stabilities are strikingly different. The stability of AB peaks at pH approximately 4.5 and is higher at pH 8 than at pH 2. In contrast, AB(SS) is most stable at acidic pH where no interhelical salt bridges are formed. The different energetic contributions of charged Glu and His residues to stability of the two coiled coil structures were evaluated from pK(a) shifts induced by folding. The six charged Glu residues involved in salt bridges stabilize leucine zipper AB by 4.5 kJ/mol yet destabilize disulfide-linked AB(SS) by -1.1 kJ/mol. Two non-ion-paired Glu charges destabilize AB by only -1.8 kJ/mol but AB(SS) by -5.6 kJ/mol. The higher relative stability of AB at neutral pH is not caused by more favorable electrostatic interactions in the folded leucine zipper. It is due mainly to unfavorable electrostatic interactions in the unfolded A and B chains and may therefore be called an inverse electrostatic effect. This study illustrates the importance of residual interactions in the unfolded state and how the energetics of the unfolded state affect the stability of the folded protein.  相似文献   

3.
Iqbalsyah TM  Doig AJ 《Biochemistry》2005,44(31):10449-10456
Salt bridges between oppositely charged side chains are well-known to stabilize protein structure, though their contributions vary considerably. Here we study Glu-Lys and Lys-Glu salt bridges, formed when the residues are spaced i, i + 4 surface of an isolated alpha-helix in aqueous solution. Both are stabilizing by -0.60 and -1.02 kcal/mol, respectively, when the interacting residues are fully charged. When the side chains are spaced i, i + 4, i + 8, forming a Glu-Lys-Glu triplet, the second salt bridge provides no additional stabilization to the helix. We attribute this to the inability of the central Lys to form two salt bridges simultaneously. Analysis of these salt bridges in protein structures shows that the Lys-Glu interaction is dominant, with the side chains of the Glu-Lys pair far apart.  相似文献   

4.
Sumana Giddu  Fei Xu  Vikas Nanda 《Proteins》2013,81(3):386-393
Stability of the collagen triple helix is largely governed by its imino acid content, namely the occurrence of proline and 4R‐hydroxyproline at the X and Y positions, respectively, of the periodic (Gly‐X‐Y)n sequence. Although other amino acids at these positions reduce stability of the triple helix, this can be partially compensated by introducing intermolecular side‐chain salt bridges. This approach was previously used to design an abc‐type heterotrimer composed of one basic, one acidic, and one neutral imino acid rich chain (Gauba and Hartgerink, J Am Chem Soc 2007;129:15034–15041). In this study, an abc‐type heterotrimer was designed to be the most stable species using a sequence recombination strategy that preserved both the amino acid composition and the network of interchain salt bridges of the original design. The target heterotrimer had the highest Tm of 50°C, 7°C greater than the next most stable species. Stability of the heterotrimer decreased with increasing ionic strength, consistent with the role of intermolecular salt bridges in promoting stability. Quantitative meta‐analysis of these results and published stability measurements on closely related peptides was used to discriminate the contributions of backbone propensity and side‐chain electrostatics to collagen stability. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The electrostatic free energy contribution of an ion pair in a protein depends on two factors, geometrical orientation of the side-chain charged groups with respect to each other and the structural context of the ion pair in the protein. Conformers in NMR ensembles enable studies of the relationship between geometry and electrostatic strengths of ion pairs, because the protein structural contexts are highly similar across different conformers. We have studied this relationship using a dataset of 22 unique ion pairs in 14 NMR conformer ensembles for 11 nonhomologous proteins. In different NMR conformers, the ion pairs are classified as salt bridges, nitrogen-oxygen (N-O) bridges and longer-range ion pairs on the basis of geometrical criteria. In salt bridges, centroids of the side-chain charged groups and at least a pair of side-chain nitrogen and oxygen atoms of the ion-pairing residues are within a 4 A distance. In N-O bridges, at least a pair of the side-chain nitrogen and oxygen atoms of the ion-pairing residues are within 4 A distance, but the distance between the side-chain charged group centroids is greater than 4 A. In the longer-range ion pairs, the side-chain charged group centroids as well as the side-chain nitrogen and oxygen atoms are more than 4 A apart. Continuum electrostatic calculations indicate that most of the ion pairs have stabilizing electrostatic contributions when their side-chain charged group centroids are within 5 A distance. Hence, most (approximately 92%) of the salt bridges and a majority (68%) of the N-O bridges are stabilizing. Most (approximately 89%) of the destabilizing ion pairs are the longer-range ion pairs. In the NMR conformer ensembles, the electrostatic interaction between side-chain charged groups of the ion-pairing residues is the strongest for salt bridges, considerably weaker for N-O bridges, and the weakest for longer-range ion pairs. These results suggest empirical rules for stabilizing electrostatic interactions in proteins.  相似文献   

6.
Six designed mutants of T4 lysozyme were created in an attempt to create putative salt bridges on the surface of the protein. The first three of the mutants, T115E (Thr 115 to Glu), Q123E, and N144E, were designed to introduce a new charged side chain close to one or more existing charged groups of the opposite sign on the surface of the protein. In each of these cases the putative electrostatic interactions introduced by the mutation include possible salt bridges between residues within consecutive turns of an alpha-helix. Effects of the mutations ranged from no change in stability to a 1.5 degrees C (0.5 kcal/mol) increase in melting temperature. In two cases, secondary (double) mutants were constructed as controls in which the charge partner was removed from the primary mutant structure. These controls proteins indicate that the contributions to stability from each of the engineered salt bridges is very small (about 0.1-0.25 kcal/mol in 0.15 M KCl). The structures of the three primary mutants were determined by X-ray crystallography and shown to be essentially the same as the wild-type structure except at the site of the mutation. Although the introduced charges in the T115E and Q123E structures are within 3-5 A of their intended partner, the introduced side chains and their intended partners were observed to be quite mobile. It has been shown that the salt bridge between His 31 and Asp 70 in T4 lysozyme stabilizes the protein by 3-5 kcal/mol [Anderson, D. E., Becktel, W. J., & Dahlquist, F. W. (1990) Biochemistry 29, 2403-2408]. To test the effectiveness of His...Asp interactions in general, three additional double mutants, K60H/L13D, K83H/A112D, and S90H/Q122D, were created in order to introduce histidine-aspartate charge pairs on the surface of the protein. Each of these mutants destabilizes the protein by 1-3 kcal/mol in 0.15 M KCl at pH values from 2 to 6.5. The X-ray crystallographic structure of the mutant K83H/A112D has been determined and shows that there are backbone conformational changes of 0.3-0.6 A extending over several residues. The introduction of the histidine and aspartate presumably introduces strain into the folded protein that destabilizes this variant. It is concluded that pairs of oppositely charged residues that are on the surface of a protein and have freedom to adopt different conformations do not tend to come together to form structurally localized salt bridges. Rather, such residues tend to remain mobile, interact weakly if at all, and do not contribute significantly to protein stability. It is argued that the entropic cost of localizing a pair of solvent-exposed charged groups on the surface of a protein largely offsets the interaction energy expected from the formation of a defined salt bridge. There are examples of strong salt bridges in proteins, but such interactions require that the folding of the protein provides the requisite driving energy to hold the interacting partners in the correct rigid alignment.  相似文献   

7.
Electrostatic interactions play a complex role in stabilizing proteins. Here, we present a rigorous thermodynamic analysis of the contribution of individual Glu and His residues to the relative pH-dependent stability of the designed disulfide-linked leucine zipper AB(SS). The contribution of an ionized side-chain to the pH-dependent stability is related to the shift of the pK(a) induced by folding of the coiled coil structure. pK(a)(F) values of ten Glu and two His side-chains in folded AB(SS) and the corresponding pK(a)(U) values in unfolded peptides with partial sequences of AB(SS) were determined by 1H NMR spectroscopy: of four Glu residues not involved in ion pairing, two are destabilizing (-5.6 kJ mol(-1)) and two are interacting with the positive alpha-helix dipoles and are thus stabilizing (+3.8 kJ mol(-1)) in charged form. The two His residues positioned in the C-terminal moiety of AB(SS) interact with the negative alpha-helix dipoles resulting in net stabilization of the coiled coil conformation carrying charged His (-2.6 kJ mol(-1)). Of the six Glu residues involved in inter-helical salt bridges, three are destabilizing and three are stabilizing in charged form, the net contribution of salt-bridged Glu side-chains being destabilizing (-1.1 kJ mol(-1)). The sum of the individual contributions of protonated Glu and His to the higher stability of AB(SS) at acidic pH (-5.4 kJ mol(-1)) agrees with the difference in stability determined by thermal unfolding at pH 8 and pH 2 (-5.3 kJ mol(-1)). To confirm salt bridge formation, the positive charge of the basic partner residue of one stabilizing and one destabilizing Glu was removed by isosteric mutations (Lys-->norleucine, Arg-->norvaline). Both mutations destabilize the coiled coil conformation at neutral pH and increase the pK(a) of the formerly ion-paired Glu side-chain, verifying the formation of a salt bridge even in the case where a charged side-chain is destabilizing. Because removing charges by a double mutation cycle mainly discloses the immediate charge-charge effect, mutational analysis tends to overestimate the overall energetic contribution of salt bridges to protein stability.  相似文献   

8.
Sarakatsannis JN  Duan Y 《Proteins》2005,60(4):732-739
The structure and folding mechanism of a given protein are determined by many factors, including the electrostatic interactions between charged residues of protein molecules known in general as salt bridges. In this study, analyses were conducted on 10,370 salt bridges in 2017 proteins and the results compared to previous statistical surveys of 36 protein structures. Although many of the general trends remained consistent with other studies, more detailed information was illuminated by the larger dataset. In particular, it was shown that there is a strong correlation between secondary structure and salt bridge formation, and that salt bridges display preferential formation in an environment of about 30% solvent accessible surface area.  相似文献   

9.
Many of the interactions that stabilize proteins are co-operative and cannot be reduced to a sum of pairwise interactions. Such interactions may be analysed by protein engineering methods using multiple thermodynamic cycles comprising wild-type protein and all combinations of mutants in the interacting residues. There is a triad of charged residues on the surface of barnase, comprising residues Asp8, Asp12 and Arg110, that interact by forming two exposed salt bridges. The three residues have been mutated to alanine to give all the single, double and triple mutants. The free energies of unfolding of wild-type and the seven mutant proteins have been determined and the results analysed to give the contributions of the residues in the two salt bridges to protein stability. It is possible to isolate the energies of forming the salt bridges relative to the solvation of the separated ions by water. In the intact triad, the apparent contribution to the stabilization energy of the protein of the salt bridge between Asp12 and Arg110 is -1.25 kcal mol-1, whereas that of the salt bridge between Asp8 with Arg110 is -0.98 kcal mol-1. The strengths of the two salt bridges are coupled: the energy of each is reduced by 0.77 kcal mol-1 when the other is absent. The salt-linked triad, relative to alanine residues at the same positions, does not contribute to the stability of the protein since the favourable interactions of the salt bridges are more than offset by other electrostatic and non-electrostatic energy terms. Salt-linked triads occur in other proteins, for example, haemoglobin, where the energy of only the salt-bridge term is important and so the coupling of salt bridges could be of general importance to the stability and function of proteins.  相似文献   

10.
The distinguishing property of Sm protein associations is their high stability. In order to understand this property, we analyzed the interface non-covalent interactions and compared the properties of the Sm protein interfaces with those of a test set, Binding Interface Database (BID). The comparison revealed that the main differences between interfaces of Sm proteins and those of the BID set are the content of charged residues, hydrogen bonds, salt bridges, and conservation scores of interface residues. In Sm proteins, the interfaces have more hydrophobic and fewer charged residues than the surface, which is also the case for the BID test set and other proteins. However, in the interfaces, the content of charged residues in Sm proteins (26%) is substantially larger than that in the BID set (22%). Both interfaces of Sm proteins and of test set have a similar number of hydrophobic interactions per 100 Å2. The interfaces of Sm proteins have substantially more hydrogen bonds than the interfaces in test set. The results show clearly that the interfaces of Sm proteins form more salt bridges compared with test set. On average, there are about 16 salt bridges per interface. The high conservation score of amino acids that are involved in non-covalent interactions in protein interfaces is an additional strong argument for their importance. The overriding conclusion from this study is that the non-covalent interactions in Sm protein interfaces considerably contribute to stability of higher order structures.  相似文献   

11.
Virulence-associated type III secretion systems (T3SS) are utilized by Gram negative bacterial pathogens for injection of effector proteins into eukaryotic host cells. The transmembrane export apparatus at the core of T3SS is composed of a unique helical complex of the hydrophobic proteins SctR, SctS, SctT, and SctU. These components comprise a number of highly conserved charged residues within their hydrophobic domains. The structure of the closed state of the core complex SctR5S4T1 revealed that several of these residues form inter- and intramolecular salt bridges, some of which have to be broken for pore opening. Mutagenesis of individual residues was shown to compromise assembly or secretion of both, the virulence-associated and the related flagellar T3SS. However, the exact role of these conserved charged residues in the assembly and function of T3SS remains elusive. Here we performed an in-depth mutagenesis analysis of these residues in the T3SS of Salmonella Typhimurium, coupled to blue native PAGE, in vivo photocrosslinking and luciferase-based secretion assays. Our data show that these conserved salt bridges are not critical for assembly of the respective protein but rather facilitate the incorporation of the following subunit into the assembling complex. Our data also indicate that these conserved charged residues are critical for type III-dependent secretion and reveal a functional link between SctSE44 and SctTR204 and the cytoplasmic domain of SctU in gating the T3SS injectisome. Overall, our analysis provides an unprecedented insight into the delicate requirements for the assembly and function of the machinery at the core of T3SS.  相似文献   

12.
Kumar S  Nussinov R 《Proteins》2001,43(4):433-454
This report investigates the effect of systemic protein conformational flexibility on the contribution of ion pairs to protein stability. Toward this goal, we use all NMR conformer ensembles in the Protein Data Bank (1) that contain at least 40 conformers, (2) whose functional form is monomeric, (3) that are nonredundant, and (4) that are large enough. We find 11 proteins adhering to these criteria. Within these proteins, we identify 22 ion pairs that are close enough to be classified as salt bridges. These are identified in the high-resolution crystal structures of the respective proteins or in the minimized average structures (if the crystal structures are unavailable) or, if both are unavailable, in the "most representative" conformer of each of the ensembles. We next calculate the electrostatic contribution of each such ion pair in each of the conformers in the ensembles. This results in a comprehensive study of 1,201 ion pairs, which allows us to look for consistent trends in their electrostatic contributions to protein stability in large sets of conformers. We find that the contributions of ion pairs vary considerably among the conformers of each protein. The vast majority of the ion pairs interconvert between being stabilizing and destabilizing to the structure at least once in the ensembles. These fluctuations reflect the variabilities in the location of the ion pairing residues and in the geometric orientation of these residues, both with respect to each other, and with respect to other charged groups in the remainder of the protein. The higher crystallographic B-factors for the respective side-chains are consistent with these fluctuations. The major conclusion from this study is that salt bridges observed in crystal structure may break, and new salt bridges may be formed. Hence, the overall stabilizing (or, destabilizing) contribution of an ion pair is conformer population dependent.  相似文献   

13.
Contributions of basic residues to ribosomal protein L11 recognition of RNA   总被引:3,自引:0,他引:3  
The C-terminal domain of ribosomal protein L11, L11-C76, binds in the distorted minor groove of a helix within a 58 nucleotide domain of 23 S rRNA. To study the electrostatic component of RNA recognition in this protein, arginine and lysine residues have been individually mutated to alanine or methionine residues at the nine sequence positions that are conserved as basic residues among bacterial L11 homologs. In measurements of the salt dependence of RNA-binding, five of these mutants have a reduced value of - partial differentiallog(K(obs))/ partial differentiallog[KCl] as compared to the parent L11-C76 sequence, indicating that these residues interact with the RNA electrostatic field. These five residues are located at the perimeter of the RNA-binding surface of the protein; all five of them form salt bridges with phosphates in the crystal structure of the complex. A sixth residue, Lys47, was found to make an electrostatic contribution to binding when measurements were made at pH 6.0, but not at pH 7.0; its pK in the free protein must be <6.5. The unusual behavior of Lys47 is explained by its burial in the hydrophobic core of the free protein, and unburial in the RNA-bound protein, where it forms a salt bridge with a phosphate. The contributions of these six residues to the electrostatic component of binding are not additive; thus the magnitude of the salt dependence cannot be used to count the number of ionic interactions in this complex. By interacting with irregular features of the RNA backbone, including an S-turn, these basic residues contribute to the specificity of L11 for its target site.  相似文献   

14.
Do salt bridges stabilize proteins? A continuum electrostatic analysis   总被引:30,自引:21,他引:9       下载免费PDF全文
The electrostatic contribution to the free energy of folding was calculated for 21 salt bridges in 9 protein X-ray crystal structures using a continuum electrostatic approach with the DELPHI computer-program package. The majority (17) were found to be electrostatically destabilizing; the average free energy change, which is analogous to mutation of salt bridging side chains to hydrophobic isosteres, was calculated to be 3.5 kcal/mol. This is fundamentally different from stability measurements using pKa shifts, which effectively measure the strength of a salt bridge relative to 1 or more charged hydrogen bonds. The calculated effect was due to a large, unfavorable desolvation contribution that was not fully compensated by favorable interactions within the salt bridge and between salt-bridge partners and other polar and charged groups in the folded protein. Some of the salt bridges were studied in further detail to determine the effect of the choice of values for atomic radii, internal protein dielectric constant, and ionic strength used in the calculations. Increased ionic strength resulted in little or no change in calculated stability for 3 of 4 salt bridges over a range of 0.1-0.9 M. The results suggest that mutation of salt bridges, particularly those that are buried, to "hydrophobic bridges" (that pack at least as well as wild type) can result in proteins with increased stability. Due to the large penalty for burying uncompensated ionizable groups, salt bridges could help to limit the number of low free energy conformations of a molecule or complex and thus play a role in determining specificity (i.e., the uniqueness of a protein fold or protein-ligand binding geometry).  相似文献   

15.
Whittington SJ  Creamer TP 《Biochemistry》2003,42(49):14690-14695
Interactions between side chains, and in particular salt bridges, have been shown to be important in the stabilization of secondary structure. Here we investigate the contribution of a salt bridge formed between a lysine and a glutamate to the polyproline II (P(II)) helical content of proline-rich peptides. Since this structure has precisely three residues per turn, charged residues spaced three residues apart are on the same side of the helix and are best situated to interact. By contrast, computer simulations show that charged residues spaced four residues apart are both too far apart to interact strongly and are oriented such that interactions are unlikely. We have measured the P(II) content of peptides containing a lysine and glutamate pair spaced three or four residues apart using circular dichroism spectroscopy. Somewhat surprisingly we find that the P(II) content is insensitive to both the spacing and the pH. These findings indicate that i --> i + 3 salt bridges do not stabilize the P(II) helical conformation. The implications of these observations for both P(II) helix formation and denatured protein conformations are discussed.  相似文献   

16.
Salt bridges between negatively (D, E) and positively charged (K, R, H) amino acids play an important role in protein stabilization. This has a more prevalent effect in membrane proteins where polar amino acids are exposed to a hydrophobic environment. In transmembrane (TM) helices the presence of charged residues can hinder the insertion of the helices into the membrane. It is possible that the formation of salt bridges could decrease the cost of membrane integration. However, the presence of intra-helical salt bridges in TM domains and their effect on insertion has not been properly studied yet. In this work, we show that potentially salt-bridge forming pairs are statistically over-represented in TM-helices. We then selected some candidates to experimentally determine the contribution of these electrostatic interactions to the translocon-assisted membrane insertion process. Using both in vitro and whole cell systems, we confirm the presence of intra-helical salt bridges in TM segments during biogenesis and determined that they contribute ~0.5 kcal/mol to the apparent free energy of membrane insertion (ΔGapp). Our observations suggest that salt bridge interactions can be stabilized during translocon-mediated insertion and thus could be relevant to consider for the future development of membrane protein prediction software.  相似文献   

17.
Differences in salt bridges are believed to be a structural hallmark of homologous enzymes from differently temperature-adapted organisms. Nevertheless, the role of salt bridges on structural stability is still controversial. While it is clear that most buried salt bridges can have a functional or structural role, the same cannot be firmly stated for ion pairs that are exposed on the protein surface. Salt bridges, found in X-ray structures, may not be stably formed in solution as a result of high flexibility or high desolvation penalty. More studies are thus needed to clarify the picture on salt bridges and temperature adaptation. We contribute here to this scenario by combining atomistic simulations and experimental mutagenesis of eight mutant variants of aqualysin I, a thermophilic subtilisin-like proteinase, in which the residues involved in salt bridges and not conserved in a psychrophilic homolog were systematically mutated. We evaluated the effects of those mutations on thermal stability and on the kinetic parameters.Overall, we show here that only few key charged residues involved in salt bridges really contribute to the enzyme thermal stability. This is especially true when they are organized in networks, as here attested by the D17N mutation, which has the most remarkable effect on stability. Other mutations had smaller effects on the properties of the enzyme indicating that most of the isolated salt bridges are not a distinctive trait related to the enhanced thermal stability of the thermophilic subtilase.  相似文献   

18.
A mechanism for the evolution of phosphorylation sites   总被引:1,自引:0,他引:1  
Pearlman SM  Serber Z  Ferrell JE 《Cell》2011,147(4):934-946
Protein phosphorylation provides a mechanism for the rapid, reversible control of protein function. Phosphorylation adds negative charge to amino acid side chains, and negatively charged amino acids (Asp/Glu) can sometimes mimic the phosphorylated state of a protein. Using a comparative genomics approach, we show that nature also employs this trick in reverse by evolving serine, threonine, and tyrosine phosphorylation sites from Asp/Glu residues. Structures of three proteins where phosphosites evolved from acidic residues (DNA topoisomerase II, enolase, and C-Raf) show that the relevant acidic residues are present in salt bridges with conserved basic residues, and that phosphorylation has the potential to conditionally restore the salt bridges. The evolution of phosphorylation sites from glutamate and aspartate provides a rationale for why phosphorylation sometimes activates proteins, and helps explain the origins of this important and complex process.  相似文献   

19.
Peptide side chain interactions were studied by molecular dynamics simulation using explicit solvent on a peptide with the sequence AAARAAAAEAAEAAAARA. Three different protonation states of the glutamic acid side chains were simulated for four 20 ns runs each, a total simulation time of 240 ns. Two different salt bridge geometries were observed and the preferred geometry was found to depend on Glu — Arg residue spacing. Stable charge clusters were also observed, particularly in the fully charged peptide. Salt bridges were selectively interrupted upon protonation, with concomitant changes in secondary structure. The fully charged peptide was highly helical between residues 9 and 13, although protonation increased helicity near the N-terminus. The contribution of salt bridges to helix stability therefore depends on both position and relative position of charged residues within a sequence.  相似文献   

20.
Here, we present the results of continuum electrostatic calculations on a dataset of 222 non-equivalent salt bridges derived from 36 non-homologous high-resolution monomeric protein crystal structures. Most of the salt bridges in our dataset are stabilizing, regardless of whether they are buried or exposed, isolated or networked, hydrogen bonded or non-hydrogen bonded. One-third of the salt bridges in our dataset are buried in the protein core, with the remainder exposed to the solvent. The difference in the dielectric properties of water versus the hydrophobic protein interior cost buried salt bridges large desolvation penalties. However, the electrostatic interactions both between the salt-bridging side-chains, and between the salt bridges and charges in their protein surroundings, are also stronger in the interior, due to the absence of solvent screening. Even large desolvation penalties for burying salt bridges are frequently more than compensated for, primarily by the electrostatic interactions between the salt-bridging side-chains. In networked salt bridges both types of electrostatic interactions, those between the salt-bridging side-chains, and those between the salt bridge and its protein environment, are of similar magnitudes. In particular, a major finding of this work is that salt bridge geometry is a critical factor in determining salt bridge stability. Salt bridges with favorable geometrical positioning of the interacting side-chain charged groups are likely to be stabilizing anywhere in the protein structure. We further find that most of the salt bridges are formed between residues that are relatively near each other in the sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号