首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human immunoglobulin G4 (IgG4) is a poor trigger of effector functions and, therefore, is the preferred subclass for therapeutic monoclonal antibodies that merely aim to block their in vivo targets. An example is natalizumab, a recombinant IgG4 antibody directed against α4-integrin and used for treatment of multiple sclerosis. Efficient treatment requires that the pharmacokinetics of therapeutic monoclonal antibodies can be accurately monitored. For natalizumab, this requires special precautions due to recently reported structural peculiarities of human IgG4. Here we describe the development of an assay to determine serum levels of natalizumab. Compared with other IgG subclasses, human IgG4 possesses unique structural properties that influence its interactions in both in vivo and in vitro settings. Thus, IgG4 undergoes Fab arm exchange in vivo, resulting in effectively monovalent antibodies. Furthermore, IgG4 is able to bind to other human and nonhuman IgG via Fc interactions. We demonstrate how these features can interfere with measurement of specific IgG4 and describe how we addressed these issues, resulting in an assay that is not sensitive to Fab arm exchange by natalizumab or to IgG4 Fc interactions.  相似文献   

2.
Human IgG2 antibodies display disulfide-mediated structural isoforms   总被引:1,自引:0,他引:1  
In this work, we present studies of the covalent structure of human IgG2 molecules. Detailed analysis showed that recombinant human IgG2 monoclonal antibody could be partially resolved into structurally distinct forms caused by multiple disulfide bond structures. In addition to the presently accepted structure for the human IgG2 subclass, we also found major structures that differ from those documented in the current literature. These novel structural isoforms are defined by the light chain constant domain (C(L)) and the heavy chain C(H)1 domain covalently linked via disulfide bonds to the hinge region of the molecule. Our results demonstrate the presence of three main types of structures within the human IgG2 subclass, and we have named these structures IgG2-A, -B, and -A/B. IgG2-A is the known classic structure for the IgG2 subclass defined by structurally independent Fab domains and hinge region. IgG2-B is a structure defined by a symmetrical arrangement of a (C(H)1-C(L)-hinge)(2) complex with both Fab regions covalently linked to the hinge. IgG2-A/B represents an intermediate form, defined by an asymmetrical arrangement involving one Fab arm covalently linked to the hinge through disulfide bonds. The newly discovered structural isoforms are present in native human IgG2 antibodies isolated from myeloma plasma and from normal serum. Furthermore, the isoforms are present in native human IgG2 with either kappa or lambda light chains, although the ratios differ between the light chain classes. These findings indicate that disulfide structural heterogeneity is a naturally occurring feature of antibodies belonging to the human IgG2 subclass.  相似文献   

3.
Human IgG comprises four subclasses with different biological functions. The IgG3 subclass has a unique character, exhibiting high effector function and Fab arm flexibility. However, it is not used as a therapeutic drug owing to an enhanced susceptibility to proteolysis. Antibody aggregation control is also important for therapeutic antibody development. To date, there have been few reports of IgG3 aggregation during protein expression and the low pH conditions needed for purification and virus inactivation. This study explored the potential of IgG3 antibody for therapeutics using anti‐CD20 IgG3 as a model to investigate aggregate formation. Initially, anti‐CD20 IgG3 antibody showed substantial aggregate formation during expression and low pH treatment. To circumvent this phenomenon, we systematically exchanged IgG3 constant domains with those of IgG1, a stable IgG. IgG3 antibody with the IgG1 CH3 domain exhibited reduced aggregate formation during expression. Differential scanning calorimetric analysis of individual amino acid substitutions revealed that two amino acid mutations in the CH3 domain, N392K and M397V, reduced aggregation and increased CH3 transition temperature. The engineered human IgG3 antibody was further improved by additional mutations of R435H to obtain IgG3KVH to achieve protein A binding and showed similar antigen binding as wild‐type IgG3. IgG3KVH also exhibited high binding activity for FcγRIIIa and C1q. In summary, we have successfully established an engineered human IgG3 antibody with reduced aggregation during bioprocessing, which will contribute to the better design of therapeutic antibodies with high effector function and Fab arm flexibility.  相似文献   

4.
《ImmunoMethods》1993,2(1):9-15
Protein crystallography offers a powerful means of analyzing the molecular mechanisms that underlie the action of bacterial immunoglobulin-binding proteins. Successful approaches used to date involve the isolation of individual IgG-binding domains from the immunoglobulin-binding protein under study and the crystallization of these on their own or in complex with Fc or Fab fragments. Two structures of complexes that have been determined to high resolution by protein crystallography are compared. A single IgG-binding domain from protein A (from Staphylococcus) binds to a human Fc fragment through formation of two α-helices, which bind in the cleft between the CH2 and the CH3 domains. Recognition is mediated by side chains on protein A which interact with conserved side chains on the surface of the antibody, ensuring binding to IgG molecules from different subclasses and species. A similar analysis of the complex of a single IgG-binding domain from protein G (from Streptococcus) with an Fab fragment from mouse IgG1 reveals that the same problem in molecular recognition is tackled in a different way. Protein G binds via an antiparallel alignment of β-strands from the IgG-binding domain and the CH1 domain in Fab: this main chain-main chain interaction is supported by a number of specific hydrogen bonds between the side chains in both proteins. By recognition of a high proportion of main-chain atoms, protein G minimizes the effects of IgG sequence variability in a way that is distinct from that adopted by protein A.  相似文献   

5.
The disulfide bond structures established decades ago for immunoglobulins have been challenged by findings from extensive characterization of recombinant and human monoclonal IgG antibodies. Non-classical disulfide bond structure was first identified in IgG4 and later in IgG2 antibodies. Although, cysteine residues should be in the disulfide bonded states, free sulfhydryls have been detected in all subclasses of IgG antibodies. In addition, disulfide bonds are susceptible to chemical modifications, which can further generate structural variants such as IgG antibodies with trisulfide bond or thioether linkages. Trisulfide bond formation has also been observed for IgG of all subclasses. Degradation of disulfide bond through β-elimination generates free sulfhydryls disulfide and dehydroalanine. Further reaction between free sulfhydryl and dehydroalanine leads to the formation of a non-reducible cross-linked species. Hydrolysis of the dehydroalanine residue contributes substantially to antibody hinge region fragmentation. The effect of these disulfide bond variations on antibody structure, stability and biological function are discussed in this review.Key words: recombinant monoclonal antibody, disulfide bond, trisulfide bond, free sulfhydryl, dehydroalanine, thioether, aggregation  相似文献   

6.
Immunoglobulin G (IgG) is one of the most abundant proteins present in human serum and a fundamental component of the immune system. IgG3 represents ∼8% of the total amount of IgG in human serum and stands out from the other IgG subclasses because of its elongated hinge region and enhanced effector functions. This study reports partial O-glycosylation of the IgG3 hinge region, observed with nanoLC-ESI-IT-MS(/MS) analysis after proteolytic digestion. The repeat regions within the IgG3 hinge were found to be in part O-glycosylated at the threonine in the triple repeat motif. Non-, mono- and disialylated core 1-type O-glycans were detected in various IgG3 samples, both poly- and monoclonal. NanoLC-ESI-IT-MS/MS with electron transfer dissociation fragmentation and CE-MS/MS with CID fragmentation were used to determine the site of IgG3 O-glycosylation. The O-glycosylation site was further confirmed by the recombinant production of mutant IgG3 in which potential O-glycosylation sites had been knocked out.For IgG3 samples from six donors we found similar O-glycan structures and site occupancies, whereas for the same samples the conserved N-glycosylation of the Fc CH2 domain showed considerable interindividual variation. The occupancy of each of the three O-glycosylation sites was found to be ∼10% in six serum-derived IgG3 samples and ∼13% in two monoclonal IgG3 allotypes.Immunoglobulin G (IgG) is one of the most abundant proteins present in human serum and represents approximately three-quarters of the total serum immunoglobulin content (1). As the main mediator of humoral immunity and an important link between the adaptive and innate immune system, IgG is a fundamental component of the immune system. IgG consists of two heavy and light chains, linked by disulfide bonds. The protein can be subdivided into the antigen-binding (Fab) and the receptor-binding (Fc) region. There are four subclasses of IgG, all of which share an overall structure homology but differ slightly in their amino acid sequence; the quantity of the subclasses in human serum is as follows: IgG1 > 2 > 3 > 4 (2).IgG3 represents ∼8% of the total amount of IgG in human serum (2), and stands out from the other IgG subclasses for a number of reasons. First of all, IgG3 contains an elongated hinge region with up to a triple repeat sequence (the actual number ranging from one to three depending on the allotype (3)), which is responsible for the increased flexibility between the Fab and the Fc part, as well as the wider and more flexible angle between the two Fab arms (4, 5). This flexibility is likely the cause of the increased affinity of IgG3, compared with the other subclasses, for divalent binding to certain types of antigens (4, 6, 7). Second, IgG3 has a higher affinity for C1q, which initiates the classical complement pathway (5, 8). The interaction between IgG3 and C1q is not due to the elongated hinge region, as demonstrated by studies showing that recombinant IgG3 with an IgG1- or IgG4-like hinge sequence exhibited even greater binding affinity for C1q than wild-type IgG3 (810). Third, IgG3 has a higher overall affinity for the Fcγ receptors (FcγRs), through which it can influence effector cells of the innate immune system (11). The CH2 domain and hinge region of IgG3 were shown to be instrumental in binding to the high affinity FcγRI receptor (12). Finally, IgG3 generally has a shorter half-life compared with the other IgG subclasses (1 versus 3 weeks) (2). This difference was traced back to an H435R mutation that confers a positive charge at physiological pH, resulting in a decreased binding to the neonatal Fc receptor (FcRn), which is involved in recycling IgG targeted for lysosomal degradation (13). The low-efficiency FcRn-mediated transport also gives rise to decreased levels of IgG3 in mucosal tissue and impaired transport of IgG3 across the placenta (14). These properties do not hold true for all types of IgG3 since a large number of IgG3 allotypes have been described, some of which lack the H435R substitution and have a half-life and placental transport rates similar to IgG1 (1316). IgG3 is more polymorphic than the other IgG subclasses, as evidenced by the high number of known allotypes (16). Most of the polymorphisms reside in the CH2 or CH3 domain, but the length of the hinge region can also display a high degree of variation. Depending on the number of sequence repeats, the hinge region can vary from 27 to 83 amino acid residues between different IgG3 allotypes (3, 16, 17).An N-linked complex type glycan is highly conserved and found in the CH2 domain of all IgG subclasses and allotypes. The type of glycan present at this site has been shown to influence the effector functions of IgG (18). N-glycans that lack a core fucose cause IgG to have an enhanced proinflammatory capacity through stronger binding to FcγRIIIa and FcγRIIIb (1820). In contrast, IgG carrying sialylated N-glycans exhibits anti-inflammatory properties, likely due to increased binding affinity to C-type lectins and/or reduced binding to FcγR (18, 21, 22).O-linked glycosylation has been reported for various immunoglobulins. O-glycans are present on the hinge region of human IgA1 and IgD and mouse IgG2b (2325). IgA1 contains nine potential sites for O-glycosylation (serine and threonine) in the hinge region, of which 3–5 are occupied, while IgD has been reported to carry between four and seven O-glycans (2426). The O-glycosylation in the hinge of murine IgG2b was observed to protect against proteolytic digestion (23). Likewise, IgA1 was found to be more susceptible to degradation by Streptococci proteases after neuraminidase treatment (27).In this study, we report partial O-glycosylation of the human IgG3 hinge. We obtained both poly- and monoclonal IgG3 from various sources and performed proteolytic digestion with trypsin or proteinase K. NanoLC-reverse phase (RP)-ESI-ion trap (IT)-MS/MS was used to examine the resulting (glyco)peptides, revealing core 1-type O-glycans on multiple sites within the IgG3 hinge region.  相似文献   

7.
In the classic paradigm, immunoglobulins represent products of clonal B cell populations, each producing antibodies (Abs) recognizing a single antigen. There is a common belief that IgGs in mammalian biological fluids are monovalent molecules having stable structures and two identical antigen-binding sites. However, human milk IgGs to different antigens undergo extensive half-molecule exchange. In the IgGs pool, only 33±5% and 13±5% of Abs contained light chains exclusively of kappa- or lambda-type, respectively, while 54±10% of the IgGs contained both kappa- and lambda- light chains. All Ab preparations contained different amounts of IgGs of all four subclasses. Interestingly, lambda-IgGs contained an increased amount of IgG2 (87%) and only 3-6% of each of IgG1, IgG3, and IgG4, while kappa-IgGs consisted of comparable (17-32%) amounts of all IgG subtypes. Chimeric kappa-lambda-IgGs consisted of ~74% IgG1, ~16% IgG2, ~5% IgG3 and ~5% IgG4. As the result of the exchange, all IgG fractions eluted from several specific affinity sorbents under the conditions destroying strong immunocomplexes demonstrated high catalytic activities in hydrolysis of ATP, DNA, oligosaccharides, phosphorylation of proteins, lipids, and oligosaccharides. In vitro, an addition of reduced glutathione and milk plasma to two IgG fractions with different affinity for DNA-cellulose led to a transition of 25-60% of Ab of one fraction to the other fraction. Our data are indicative of the possibility of half-molecule exchange between milk IgGs of various subclasses, raised against different antigens (including abzymes), which explains the polyspecificity and cross-reactivity of these IgGs.  相似文献   

8.
The constant region of the gamma 1, gamma 2 and gamma 3 heavy chains of the human IgG1, IgG2 and IgG3 immunoglobulins carries antigenic determinants or G1m, G2m and G3m allotypes, which are genetic markers of these subclasses. The exceptional presence on gamma 1 and gamma 2 chains of Gm allotypes usually located on the CH3 domain of gamma 3 shows an unexpected clustering of base changes and subsequent identity of short DNA sequences in the CH3 exon of the non-allelic gamma 1, gamma 2 and gamma 3 genes. Such clusters of substitutions are not easily explained on the classical basis of point mutations. A gene conversion, which substituted a segment of the gamma 1 or gamma 2 gene with the homologous region of the non-allelic gamma 3 gene, is more likely. Other examples of possible conversion involving the gamma genes are described. The conservation or the restoration of short sequences produced by the conversion events might be related to the biological properties of the constant region of the heavy chains.  相似文献   

9.
The study was focused on the relationship of Fasciola hepatica-secreted proteinases and human IgG subclasses. Each IgG was incubated at different pH values and lengths of time with either the adult parasite excretion-secretion products or the purified cysteinyl proteinases cathepsin L1 and cathepsin L2. The Ig fragments produced were isolated and characterized by Western blot analysis, and the specific cleavage sites were determined by amino acid sequence analysis. Parasite excretion-secretion products and both cathepsins L produced similar degradation patterns and cleaved all human IgG subclasses at the hinge region, yielding at pH 7.3 and 37 degrees C Fab and Fc fragments in the case of IgG1 and IgG3 or Fab(2) and Fc in IgG2 and IgG4. While IgG1 and IgG3 were readily degraded by E/S products either in the presence or in the absence of reducing agents, IgG2 and IgG4 were resistant to proteolysis and were only digested in the presence of 0.1 M dithiothreitol. The cathepsins L needed the presence of dithiothreitol to digest IgG1, IgG2, and IgG4 whereas IgG3 was identically cleaved under both reducing and nonreducing conditions. The main cleavage sites produced by E/S products, CL1, or CL2 were located at the positions peptide bonds: His237-Thr238, Glu237-Cys239, Gly233-Asp234, and Ser241-Cys242 for gamma1, gamma2, gamma3, or gamma4, respectively. The enzymes gave additional splitting sites on the middle hinge of IgG3 to produce shorter Fc fragments and also produce Fd degradation of the IgG4. No cleavage specificity differences were found between CL1 and CL2, but they differed in the kinetics of IgG3 degradation. By lowering the pH, only the E/S products produced concomitant destruction of the Fc while preserving the Fab portion. Under all the conditions assayed the enzymes produced an Fc'-like fragment of 14-15 kDa corresponding to the whole CH3 domain of the immunoglobulin. Contrary to the extensive degradation produced by cathepsins on digested proteins, its actions on IgG subclasses were specific and restricted; thus, all the fragments produced could be potentially involved in the mechanisms used by the parasite to evade the host immune response.  相似文献   

10.
The rabbit immune repertoire has long been a rich source of diagnostic polyclonal antibodies. Now it also holds great promise as a source of therapeutic monoclonal antibodies. On the basis of phage display technology, we recently reported the first humanization of a rabbit monoclonal antibody. The allotypic diversity of rabbit immunoglobulins prompted us to compare different rabbit immune repertoires for the generation and humanization of monoclonal antibodies that bind with strong affinity to antigens involved in tumor angiogenesis. In particular, we evaluated the diversity of unselected and selected chimeric rabbit/human Fab libraries that were derived from different kappa light chain allotypes. Most rabbit light chains have an extra disulfide bridge that links the variable and constant domains in addition to the two intrachain disulfide bridges shared with mouse and human kappa light chains. Here we evaluate the impact of this increased disulfide bridge complexity on the generation and selection of chimeric rabbit/human Fab libraries. We demonstrate that rabbits with mutant bas and wild-type parental b9 allotypes are excellent sources for therapeutic monoclonal antibodies. Featured among the selected clones with b9 allotype is a rabbit/human Fab that binds with a dissociation constant of 1nM to both human and mouse Tie-2, which will facilitate its evaluation in mouse models of human cancer. Examination of 228 new rabbit antibody sequences allowed for a comprehensive comparison of the LCDR3 and HCDR3 length diversity in rabbits. This study revealed that rabbits exhibit an HCDR3 length distribution more closely related to human antibodies than mouse antibodies.  相似文献   

11.
We report the stabilization of the human IgG1 Fc fragment by engineered intradomain disulfide bonds. One of these bonds, which connects the N-terminus of the CH3 domain with the F-strand, led to an increase of the melting temperature of this domain by 10°C as compared to the CH3 domain in the context of the wild-type Fc region. Another engineered disulfide bond, which connects the BC loop of the CH3 domain with the D-strand, resulted in an increase of T(m) of 5°C. Combined in one molecule, both intradomain disulfide bonds led to an increase of the T(m) of about 15°C. All of these mutations had no impact on the thermal stability of the CH2 domain. Importantly, the binding of neonatal Fc receptor was also not influenced by the mutations. Overall, the stabilized CH3 domains described in this report provide an excellent basic scaffold for the engineering of Fc fragments for antigen-binding or other desired additional or improved properties. Additionally, we have introduced the intradomain disulfide bonds into an IgG Fc fragment engineered in C-terminal loops of the CH3 domain for binding to Her2/neu, and observed an increase of the T(m) of the CH3 domain for 7.5°C for CysP4, 15.5°C for CysP2 and 19°C for the CysP2 and CysP4 disulfide bonds combined in one molecule.  相似文献   

12.
The paper deals with the direct experimental proof that human immunoglobulin G1 (IgG1) contains a reactive disulfide bond that can be opened by 3,3'-dithiobis(6-nitrobenzoate) (DTNB) within 24 h by a SH-catalysed disulfide exchange reaction. These results were obtained with the purified IgG1 myeloma protein and confirm earlier indirect evidence based on correlation analysis of DTNB reactivity and quantitative IgG1 determination. The reactive disulfide bond is most likely the one between Cys235 of the heavy chains in the "hinge"-region, activated for the disulfide exchange by the protonated amino groups of Lys231 as turned out by analysis of IgG1. As with the whole molecule, one mol of reactive disulfide was found per mol of the Fc-fragment. 0.8 mol of labile S-S bonds was detected per mol of F(ab)2. After separation of the excess of reagent, the sedimentation pattern still corresponded with the dimer. The unaltered antigenic properties as well as the crystallizability speak against any severe conformational changes. Therefrom it was concluded that in approximately 80% of the F(ab)2 molecules one of the two inter heavy chain-bridges was opened. With the isolated F(ab)-fragment a reaction with DTNB was ascertained to an extent of 20%, which is probably due to an altered stability of the heavy-light chain-SS-bridge. However, no influence on the sedimentation pattern was observed. The intrachainar disulfide bonds of neither the heavy nor the light chain reacted with DTNB to a measurable extent.  相似文献   

13.
Safety of human therapeutic Abs is generally assessed in nonhuman primates. Whereas IgG1 shows identical FcγR interaction and effector function profile in both species, fundamental differences in the IgG2 and IgG4 Ab subclasses were found between the two species. Granulocytes, the main effector cells against IgG2- and IgG4-opsonized bacteria and parasites, do not express FcγRIIIb, but show higher levels of FcγRII in cynomolgus monkey. In humans, IgG2 and IgG4 adapted a silent Fc region with weak binding to FcγR and effector functions, whereas, in contrast, cynomolgus monkey IgG2 and IgG4 display strong effector function as well as differences in IgG4 Fab arm exchange. To balance this shift toward activation, the cynomolgus inhibitory FcγRIIb shows strongly increased affinity for IgG2. In view of these findings, in vitro and in vivo results for human IgG2 and IgG4 obtained in the cynomolgus monkey have to be cautiously interpreted, whereas effector function-related effects of human IgG1 Abs are expected to be predictable for humans.  相似文献   

14.
A method that makes use of polyacrylamide gel electrophoresis was developed for the analysis of intramolecular disulfide bonds in proteins. Proteins with different numbers of cleaved disulfide bonds are alkylated with iodoacetic acid or iodoacetamide as the first step. The disulfide bonds remaining were reduced by excess dithiothreitol, and the newly generated free sulfhydryl groups were alkylated with the reagent not yet used (iodoacetamide, iodoacetic acid, or vinyl-pyridine) as the second step. This treatment made it possible for lysozyme (Mr, 14,000; 4 disulfides), the N-terminal half-molecule of conalbumin (Mr, 36,000; 6 disulfides), the C-terminal half-molecule of conalbumin (Mr, 40,000; 9 disulfides), and whole conalbumin (Mr, 78,000; 15 disulfides) to be separated by acid-urea polyacrylamide gel electrophoresis into distinct bands depending on the number of disulfide bonds cleaved. The method allowed us to determine the total number of disulfide bonds in native proteins and to assess the cleaved levels of disulfide bonds in partially reduced proteins. Two-step alkylation used in combination with radioautography was especially useful for the analysis of disulfide bonds in proteins synthesized in complex biological systems.  相似文献   

15.
A virally encoded, high-affinity Fc receptor (FcR) is found on herpes simplex virus type 1 (HSV-1) particles and infected cells where its binding of non-immune IgG protects cells from host-mediated lysis. Whilst mutation or aglycosylation of the IgG CH2 domain reduced binding to human FcR, the interaction with HSV-1 FcR was not affected. However, the HSV-1 FcR, unlike human FcR, discriminates between human IgG1 allotypes, being sensitive to changes at positions 214 (CH1) and 356/358 (CH3), away from its proposed binding site at the CH2-CH3 interface. The biological consequences are not known but this is the first evidence of a major functional difference between IgG1 allotypes.  相似文献   

16.
《MABS-AUSTIN》2013,5(8):1190-1199
ABSTRACT

Antibody-drug conjugates (ADCs) that are formed using thiol-maleimide chemistry are commonly produced by reactions that occur at or above neutral pHs. Alkaline environments can promote disulfide bond scrambling, and may result in the reconfiguration of interchain disulfide bonds in IgG antibodies, particularly in the IgG2 and IgG4 subclasses. IgG2-A and IgG2-B antibodies generated under basic conditions yielded ADCs with comparable average drug-to-antibody ratios and conjugate distributions. In contrast, the antibody disulfide configuration affected the distribution of ADCs generated under acidic conditions. The similarities of the ADCs derived from alkaline reactions were attributed to the scrambling of interchain disulfide bonds during the partial reduction step, where conversion of the IgG2-A isoform to the IgG2-B isoform was favored.  相似文献   

17.
More than twenty recombinant monoclonal antibodies are approved as therapeutics. Almost all of these are based on the whole IgG isotype format, but vary in the origin of the variable regions between mouse (chimeric), humanized mouse and fully human sequences; all of those with whole IgG format employ human constant region sequences. Currently, the opposing merits of the four IgG subclasses are considered with respect to the in vivo biological activities considered to be appropriate to the disease indication being treated. Human heavy chain genes also exhibit extensive structural polymorphism(s) and, being closely linked, are inherited as a haplotype. Polymorphisms (allotypes) within the IgG isotype were originally discovered and described using serological reagents derived from humans; demonstrating that allotypic variants can be immunogenic and provoke antibody responses as a result of allo-immunization. The serologically defined allotypes differ widely within and between population groups; therefore, a mAb of a given allotype will, inevitably, be delivered to a cohort of patients homozygous for the alternative allotype. This publication reviews the serologically defined human IgG allotypes and considers the potential for allotype differences to contribute to or potentiate immunogenicity.Key words: human IgG, polymorphisms, IgG allotypes, antibody therapeutics, immunogenicity, anti-therapeutic antibody, IgG glycosylation  相似文献   

18.
Hepatitis B virus immune escape mutants have been associated with vaccine failure and reinfection of grafted liver despite immune prophylaxis, but their biological properties remain largely unknown. Transfection of 20 such mutants in a human hepatoma cell line identified many with severe impairment in virion secretion, which can be rescued to various extents by coexpression of wild-type envelope proteins or introduction of a novel glycosylation site. Consistent with their role in maintaining intra- or intermolecular disulfide bonds, cysteine residues within the “a” determinant are critical for virion secretion.  相似文献   

19.
Three allotypes of IgG were identified in pig. Based on data obtained on electrophoretic mobility as well as on results of the International Comparative Test ISABR for pig blood group, polymorphic proteins and enzymes (1987-1988), the allotypes are specified as markers of two different IgG subclasses and are referred to as IgG1a, IgG2b and IgG2c. The former of these is established as corresponding to the already known IGH3 C1, and the other two had not been earlier described. In herds of pigs being bred in the Georgian SSR, the IgG1a allotype frequencies in Kakhetinskaya, Large White, Landrase and Lithuanian white were 0.84, 0.93, 0.91 and 0.94, respectively, whereas for the IgG2b allotype it ran 0.89, 0.73, 0.79, and 0.69 in the order mentioned. The IgG2c allotype was not registered in samples under examination.  相似文献   

20.
Antibodies evoke cellular responses through the binding of their Fc region to Fc receptors, most of which contain immunoreceptor tyrosine-based activation motif domains and are thus considered “activating.” However, there is a growing appreciation of these receptors for their ability to deliver an inhibitory signal as well. We previously described one such phenomenon whereby interferon (IFN)γ signaling is inhibited by immune complex signaling through FcγRI. To understand the implications of this in the context of therapeutic antibodies, we assessed individual IgG subclasses to determine their ability to deliver this anti-inflammatory signal in monocyte-derived macrophages. Like IgG1, we found that IgG4 is fully capable of inhibiting IFNγ-mediated events. In addition, F(ab’)2 fragments that interfere with FcγRI signaling reversed this effect. For mAbs developed with either an IgG1 or an IgG4 constant region for indications where inflammation is undesirable, further examination of a potential Fc-dependent contribution to their mechanism of action is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号