首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selenocysteine is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the selenocysteine insertion sequence element located in the 3′ UTR of selenoprotein mRNAs, selenium bioavailability, and, possibly, exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical up-regulation of selenoproteins, protected HEK293 cells from reactive oxygen species formation. Furthermore, in response to oxidative stress, we identified a selective up-regulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK, and Sps2). Interestingly, the response was more efficient when selenium was limiting. Although a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by up-regulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, selenocysteine-specific elongation factor, and L30 recoding factors from the cytoplasm to the nucleus.  相似文献   

2.
The polycomb protein Bmi-1 represses the INK4a locus, which encodes the tumor suppressors p16 and p14(ARF). Here we report that Bmi-1 is downregulated when WI-38 human fibroblasts undergo replicative senescence, but not quiescence, and extends replicative life span when overexpressed. Life span extension by Bmi-1 required the pRb, but not p53, tumor suppressor protein. Deletion analysis showed that the RING finger and helix-turn-helix domains of Bmi-1 were required for life span extension and suppression of p16. Furthermore, a RING finger deletion mutant exhibited dominant negative activity, inducing p16 and premature senescence. Interestingly, presenescent cultures of some, but not all, human fibroblasts contained growth-arrested cells expressing high levels of p16 and apparently arrested by a p53- and telomere-independent mechanism. Bmi-1 selectively extended the life span of these cultures. Low O(2) concentrations had no effect on p16 levels or life span extension by Bmi-1 but reduced expression of the p53 target, p21. We propose that some human fibroblast strains are more sensitive to stress-induced senescence and have both p16-dependent and p53/telomere-dependent pathways of senescence. Our data suggest that Bmi-1 extends the replicative life span of human fibroblasts by suppressing the p16-dependent senescence pathway.  相似文献   

3.
Selenium is an essential dietary element with antioxidant roles in immune regulation, but there is little understanding of how this element acts at the molecular level in host defense and inflammatory disease. Selenium is incorporated into the amino acid selenocysteine (Sec), which in turn is inserted into selenoproteins in a manner dependent on Sec tRNA([Ser]Sec). To investigate the molecular mechanism that links selenium to T cell immunity, we generated mice with selenoprotein-less T cells by cell type-specific ablation of the Sec tRNA([Ser]Sec) gene (trsp). Herein, we show that these mutant mice exhibit decreased pools of mature T cells and a defect in T cell-dependent antibody responses. We also demonstrate that selenoprotein deficiency leads to oxidant hyperproduction in T cells and thereby suppresses T cell proliferation in response to T cell receptor stimulation. These findings offer novel insights into immune function of selenium and physiological antioxidants.  相似文献   

4.
5.
6.
The proteasome constitutes the main non-lysosomal cellular protease activity, and plays a crucial role not only in the disposal of unwanted material, but also in the regulation of numerous cellular processes. Previously, we have reported that during the replicative senescence of WI-38 fibroblasts there is a significant impairment in proteasome activity, which probably has important implications in the control of MAPK signaling and cellular proliferation. In this study, we report the potential role of the proteasome in the generation of the senescent phenotype in WI-38 fibroblasts. Our results indicate that inhibition of proteasome activity leads to an impairment in cell proliferation, and a shortening of the life span. The results also indicate that inhibition of the proteasome in young cells induces a premature senescent-like phenotype, as indicated by the increase in senescence-associated beta-galactosidase (SA beta-gal) activity and the abundance of both p21 and collagenase mRNAs, as well as a decreased level of EPC-1 mRNA known markers of cellular senescence, not previously shown to depend on proteasome activity. Together, our results suggest a molecular mechanism for the lack of responsiveness of human cells to growth factors, and point towards a role for the proteasome in the control of the life span of both cells and organisms.  相似文献   

7.
Selenoproteins     
Selenium is an essential micronutrient for man and animals. The role of selenium has been attributed largely to its presence in selenoproteins as the 21st amino acid, selenocysteine (Sec, U). Sec is encoded by TGA in DNA. A unique mechanism is used to decode the UGA codon in mRNA to co-translationally incorporate Sec into the growing polypeptide because there is no free pool of Sec. In the human genome, 25 genes for selenoproteins have been identified. Selenoproteins such as glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases are involved in redox reactions, and Sec is an active-site residue essential for catalytic activity. Selenoproteins have biological functions in oxidoreductions, redox signaling, antioxidant defense, thyroid hormone metabolism, and immune responses. They thus possess a strong correlation with human diseases such as cancer, Keshan disease, virus infections, male infertility, and abnormalities in immune responses and thyroid hormone function.  相似文献   

8.
9.

Background  

Normal cells possess a limited proliferative life span after which they enter a state of irreversible growth arrest. This process, known as replicative senescence, is accompanied by changes in gene expression that give rise to a variety of senescence-associated phenotypes. It has been suggested that these gene expression changes result in part from alterations in the histone acetylation machinery. Here we examine the influence of HDAC inhibitors on the expression of senescent markers in pre- and post-senescent WI-38 cells.  相似文献   

10.
To investigate the effect of cell cycle inhibitor p19ARF on replicative senescence of human diploid cell,recombinant p19ARF eukaryotic expression vector was constructed and p19ARF gene was transfected into human diploid fibroblasts (WI-38 cells) by liposome-mediated transfection for overexpression.Then, the effects of p19ARF on replicative senescence of WI-38 cells were observed. The results revealed that, compared with control cells, the WI-38 cells in which p19ARFgene was introduced showed significant up-regulation of p53 and p21 expression level, decrease of cell generation by 10-12 generations, decline of cell growth rate with cell cycle being arrested at G1 phase, increase of positive rate of senescent marker SA-β-gal staining, and decrease of mitochondrial membrane potential. The morphology of the transfected fibroblasts presented the characteristics changes similar to senescent cells.These results indicated that high expression of p19ARF may promote the senescent process of human diploid cells.  相似文献   

11.
Selenium deficiency causes a fall in the concentrations of selenoproteins but selenoprotein P and type I iodothyronine 5'-deiodinase (5'-deiodinase) are more resistant to this effect than is glutathione peroxidase. To investigate the differential regulation of these selenoproteins, a selenium-deficient diet was fed to weanling rats for 14.5 weeks and their hepatic mRNAs were measured by Northern analysis. Levels of all 3 mRNAs fell progressively with time. Selenoprotein P and 5'-deiodinase mRNAs remained higher at all time points relative to control than glutathione peroxidase mRNA. mRNA decreases were mirrored by decreases in glutathione peroxidase activity and selenoprotein P concentration. However, the decreases in the protein levels were greater than the decreases in their mRNAs, suggesting that synthesis of both proteins was limited to a similar extent at the translational level by the availability of selenium. In addition to this apparently unregulated translational effect, these results point to a pretranslational regulation, affecting mRNA levels, which could account for the differential effect of selenium deficiency on glutathione peroxidase and the other selenoproteins. This regulation might serve to direct selenium to selenoprotein P and 5'-deiodinase when limited amounts of the element are available.  相似文献   

12.
Selenium is an essential mineral element with important biological functions for the whole body through incorporation into selenoproteins. This element is highly concentrated in the thyroid gland. Selenoproteins provide antioxidant protection for this tissue against the oxidative stress caused by free radicals and contribute, via iodothyronine deiodinases, to the metabolism of thyroid hormones. It is known that oxidative stress plays a major role in carcinogenesis and that in recent decades there has been an increase in the incidence of thyroid cancer. The anti-carcinogenic action of selenium, although not fully understood, is mainly attributable to selenoproteins antioxidant properties, and to the ability to modulate cell proliferation (cell cycle and apoptosis), energy metabolism, and cellular immune response, significantly altered during tumorigenesis. Researchers have suggested that different forms of selenium supplementation may be beneficial in the prevention and treatment of thyroid cancer; however, the studies have several methodological limitations. This review is a summary of the current knowledge on how selenium and selenoproteins related to thyroid cancer.  相似文献   

13.
Selenium, a dietary trace mineral, essential for humans and animals, exerts its effects mainly through its incorporation into selenoproteins. Adequate selenium intake is needed to maximize the activity of selenoproteins, among which glutathione peroxidases have been shown to play a major role in cellular defense against oxidative stress initiated by excess reactive oxygen species. In humans, a low selenium status has been linked to increased risk of various diseases, including heart disease. The main objective of this review is to present current knowledge on the role of selenium in cardiac health. Experimental studies have shown that selenium may exert protective effects on cardiac tissue in animal models involving oxidative stress. Because of the narrow safety margin of this mineral, most interventional studies in humans have reported inconsistent findings. Major determinants of selenium status in humans are not well understood and several nondietary factors might be associated with reduced selenium status. In this review, we discuss recent studies regarding the role of selenoproteins in the cardiovascular system, the effect of dietary intake on selenium status, the impact of selenium status on cardiac health, and the cellular mechanisms that can be involved in the physiological and toxic effects of selenium.  相似文献   

14.
15.
16.
Repeated exposures to sublethal concentrations of tert-butylhydroperoxide and ethanol trigger premature senescence of WI-38 human diploid fibroblasts. We found 16 replicative senescence-related genes with similar alterations in expression level in replicative senescence and two models of stress-induced premature senescence. Among these genes was IGFBP-3. Using a siRNA approach, we showed that IGFBP-3 regulates the appearance of several biomarkers of senescence after repeated exposures of WI-38 fibroblasts to tert-butylhydroperoxide and ethanol.  相似文献   

17.
Normal cells in culture display a limited capacity to divide and reach a non-proliferative state called cellular senescence. Spontaneous escape from senescence resulting in an indefinite life span is an exceptionally rare event for normal human cells and viral oncoproteins have been shown to extend the replicative life span but not to immortalize them. Telomere shortening has been proposed as a mitotic clock that regulates cellular senescence. Telomerase is capable of synthesizing telomere repeats onto chromosome ends to block telomere shortening and to maintain human fibroblasts in proliferation beyond their usual life span. However, the consequence of telomerase expression on the life span of human myoblasts and on their differentiation is unknown. In this study, the telomerase gene and the puromycin resistance gene were introduced into human satellite cells, which are the natural muscle precursors (myoblasts) in the adult and therefore, a target for cell-mediated gene therapy. Satellite cells expressing telomerase were selected, and the effects of the expression of the telomerase gene on proliferation, telomere length, and differentiation were investigated. Our results show that the telomerase-expressing cells are able to differentiate and to form multinucleated myotubes expressing mature muscle markers and do not form tumors in vivo. We also demonstrated that the expression of hTERT can extend the replicative life of muscle cells although these failed to undergo immortalization.  相似文献   

18.
Primary human cells have a definite life span and enter into cellular senescence before ceasing cell growth. Oxidative stress produced by aerobic metabolism has been shown to accelerate cellular senescence. Here, we demonstrated that ascorbic acid, used as an antioxygenic reagent, delayed cellular senescence in a continuous culture of normal human embryonic cells, human adult skin fibroblast cells, and Werner syndrome (WS) cells. The results using human embryonic cells showed that treatment with ascorbic acid phospholic ester magnesium salt (APM) decreased the level of oxidative stress, and extended the replicative life span. The effect of APM to extend the replicative life span was also shown in normal human adult cells and WS cells. To understand the mechanism of extension of cellular life span, we determined the telomere lengths of human embryonic cells, both with and without APM treatment, and demonstrated that APM treatment reduced the rate of telomere shortening. The present results indicate that constitutive oxidative stress plays a role in determining the replicative life span and that suppression of oxidative stress by an antioxidative agent, APM, extends the replicative life span by reducing the rate of telomere shortening.  相似文献   

19.
The antioxidant effects of selenium as a component of selenoproteins has been thought to modulate host immunity and viral pathogenesis. Accordingly, the association of low dietary selenium status with inflammatory and immunodeficiency has been reported in the literature; however, the causal role of selenium deficiency in chronic inflammatory diseases and viral infection is still undefined. The COVID-19, characterized by acute respiratory syndrome and caused by the novel coronavirus 2, SARS-CoV-2, has infected millions of individuals worldwide since late 2019. The severity and mortality from COVID-19 have been associated with several factor, including age, sex and selenium deficiency. However, available data on selenium status and COVID-19 are limited, and a possible causative role for selenium deficiency in COVID-19 severity has yet to be fully addressed. In this context, we review the relationship between selenium, selenoproteins, COVID-19, immune and inflammatory responses, viral infection, and aging. Regardless of the role of selenium in immune and inflammatory responses, we emphasize that selenium supplementation should be indicated after a selenium deficiency be detected, particularly, in view of the critical role played by selenoproteins in human health. In addition, the levels of selenium should be monitored after the start of supplementation and discontinued as soon as normal levels are reached. Periodic assessment of selenium levels after supplementation is a critical issue to avoid over production of toxic metabolites of selenide because under normal conditions, selenoproteins attain saturated expression levels that limits their potential deleterious metabolic effects.  相似文献   

20.
Selenoprotein expression is regulated at multiple levels in prostate cells   总被引:2,自引:0,他引:2  
Selenium supplementation in a population with low basal blood selenium levels has been reported to decrease the incidence of several cancers including prostate cancer. Based on the clinical findings, it is likely that the antioxidant function of one or more selenoproteins is responsible for the chemopreventive effect, although low molecular weight seleno-compounds have also been posited to selectively induce apoptosis in transformed cells. To address the effects of selenium supplementation on selenoprotein expression in prostate cells, we have undertaken an analysis of antioxidant selenoprotein expression as well as selenium toxicity in non-tumorigenic prostate epithelial cells (RWPE- 1 ) and prostate cancer cells (LNCaP and PC-3). Our results show that two of the glutathione peroxidase family members (GPX1 and GPX4) are highly induced by supplemental selenium in prostate cancer cells but only slightly induced in RWPE-1 cells. In addition, GPX 1 levels are dramatically lower in PC-3 cells as compared to RWPE- 1 or LNCaP cells. GPX2 protein and mRNA, however, are only detectable in RWPE-1 cells. Of the three selenium compounds tested (sodium selenite, sodium selenate and selenomethionine), only sodium selenite shows toxicity in a physiological range of selenium concentrations. Notably and in contrast to previous studies, RWPE-1 cells were significantly more sensitive to selenite than either of the prostate cancer cell lines. These results demonstrate that selenoproteins and selenium metabolism are regulated at multiple levels in prostate cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号