首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heat shock proteins (HSPs) provide a useful system for studying developmental patterns in the digenetic Leishmania parasites, since their expression is induced in the mammalian life form. Translation regulation plays a key role in control of protein coding genes in trypanosomatids, and is directed exclusively by elements in the 3′ untranslated region (UTR). Using sequential deletions of the Leishmania Hsp83 3′ UTR (888 nucleotides [nt]), we mapped a region of 150 nt that was required, but not sufficient for preferential translation of a reporter gene at mammalian-like temperatures, suggesting that changes in RNA structure could be involved. An advanced bioinformatics package for prediction of RNA folding (UNAfold) marked the regulatory region on a highly probable structural arm that includes a polypyrimidine tract (PPT). Mutagenesis of this PPT abrogated completely preferential translation of the fused reporter gene. Furthermore, temperature elevation caused the regulatory region to melt more extensively than the same region that lacked the PPT. We propose that at elevated temperatures the regulatory element in the 3′ UTR is more accessible to mediators that promote its interaction with the basal translation components at the 5′ end during mRNA circularization. Translation initiation of Hsp83 at all temperatures appears to proceed via scanning of the 5′ UTR, since a hairpin structure abolishes expression of a fused reporter gene.  相似文献   

2.
3.
4.
5.
6.

Background

IL-24 (melanoma differentiation-associated gene-7 (mda-7)), a member of the IL-10 cytokine family, possesses the properties of a classical cytokine as well as tumor suppressor effects. The exact role of IL-24 in the immune system has not been defined but studies have indicated a role for IL-24 in inflammatory conditions such as psoriasis. The tumor suppressor effects of IL-24 include inhibition of angiogenesis, sensitization to chemotherapy, and p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis. Current knowledge on the regulation of IL-24 expression is sparse. Previous studies have suggested that mRNA stabilization is of major importance to IL-24 expression. Yet, the mechanisms responsible for the regulation of IL-24 mRNA stability remain unidentified. As p38 MAPK is known to regulate gene expression by interfering with mRNA degradation we examined the role of p38 MAPK in the regulation of IL-24 gene expression in cultured normal human keratinocytes.

Methodology/Principal Findings

In the present study we show that anisomycin- and IL-1β- induced IL-24 expression is strongly dependent on p38 MAPK activation. Studies of IL-24 mRNA stability in anisomycin-treated keratinocytes reveal that the p38 MAPK inhibitor SB 202190 accelerates IL-24 mRNA decay suggesting p38 MAPK to regulate IL-24 expression by mRNA-stabilizing mechanisms. The insertion of the 3′ untranslated region (UTR) of IL-24 mRNA in a tet-off reporter construct induces degradation of the reporter mRNA. The observed mRNA degradation is markedly reduced when a constitutively active mutant of MAPK kinase 6 (MKK6), which selectively activates p38 MAPK, is co-expressed.

Conclusions/Significance

Taken together, we here report p38 MAPK as a regulator of IL-24 expression and determine interference with destabilization mediated by the 3′ UTR of IL-24 mRNA as mode of action. As discussed in the present work these findings have important implications for our understanding of IL-24 as a tumor suppressor protein as well as an immune modulating cytokine.  相似文献   

7.
8.
Abstract

5′-Deoxy-5′-methylthioguanosine (MTG) has been identified in human urine by combined gas chromatography/mass spectrometry. Preliminary identification of MTG in the urine of a lung cancer patient was based upon mass spectral comparisons of the trimethylsilylated (TMS) urinary component to both MTA-(TMS)3 and guanosine-(TMS)5. Structural confirmation was obtained by comparing the mass spectral and chromatographic characteristics of authentic MTG to those of the urinary component.  相似文献   

9.
Abstract

The conformational properties of the cyclic dinucleotide d<(pApA)> were studied by means of molecular mechanics calculations in which a multiconformation analysis was combined with minimum energy calculations. In this approach models of possible conformers are built by varying the torsion angles of the molecule systematically. These models are then subjected to energy minimization; in the present investigation use was made of the AMBER Force field. It followed that the lowest energy conformer has a pseudo-two-fold axis of symmetry. In this conformer the deoxyribose sugars adopt a N-type conformation. The conformation of the sugar-phosphate backbone is determined by the following torsion angles: α+, β1, γ+, ?1 and ζ+. The conformation of this ringsystem corresponds to the structure derived earlier by means of NMR spectroscopy and X-ray diffraction. The observation of a preference for N-type sugar conformations in this molecule can be explained by the steric hindrance induced between opposite H3′ atoms when one sugar is switched from N- to S-type puckers. The sugars can in principle switch from N- to S-type conformations, but this requires at least the transition of γ+ to γ?. In this process the molecule obtains an extended shape in which the bases switch from a pseudo-axial to a pseudo-equatorial position. The calculations demonstrate that, apart from the results obtained for the lowest energy conformation, the 180° change in the propagation direction of the phosphate backbone can be achieved by several different combinations of the backbone torsion angles. It appeared that in the low energy conformers five higher order correlations are found. The combination of torsion angles which are involved in changes in the propagation direction of the sugar-phosphate backbone in DNA-hairpin loops and in tRNA are found in the dataset obtained for cyclic d<(pApA)>. It turns out that in the available examples, 180° changes in the backbone direction are localized between two adjacent nucleotides.  相似文献   

10.
Nucleases play important roles in all DNA transactions, including replication, repair, and recombination. Many different nucleases from bacterial and eukaryotic organisms have been identified and functionally characterized. However, our knowledge about the nucleases from Archaea, the third domain of life, is still limited. We searched for 3′–5′ exonuclease activity in the hyperthermophilic archaeon, Pyrococcus furiosus, and identified a protein with the target activity. The purified protein, encoded by PF2046, is composed of 229 amino acids with a molecular weight of 25,596, and displayed single-strand specific 3′–5′ exonuclease activity. The protein, designated as PfuExo I, forms a stable trimeric complex in solution and excises the DNA at every two nucleotides from the 3′ to 5′ direction. The amino acid sequence of this protein is conserved only in Thermococci, one of the hyperthermophilic classes in the Euryarchaeota subdomain in Archaea. The newly discovered exonuclease lacks similarity to any other proteins with known function, including hitherto reported 3′–5′ exonucleases. This novel nuclease may be involved in a DNA repair pathway conserved in the living organisms as a specific member for some hyperthermophilic archaea.  相似文献   

11.
《Mutation Research Letters》1993,301(4):235-241
Both spontaneous frameshift mutation and deletion mutation were measured in a T7 phage deficient in the 3′ → 5′ exonuclease of T7 DNA polymerase. It was found that the absence of this exonuclease caused a marked increase in the revision of both plus one and minus one mutations. The exonuclease deficiency caused essentially no effect on the frequency of deletion between 10-bp direct repeats even when the segment between the direct repeats contained a 25-bp palindrome.  相似文献   

12.
Several plant genes have their first intron in the 5′ untranslated region (5′ UTR), and such 5′ UTR introns often show several biological functions, including the intron-mediated enhancement of protein expression through an increase of mRNA level (IME), intron-dependent spatial expression, and intron-mediated enhancement of translation. Here, we show another function of the 5′ UTR intron, i.e., the 5′ UTR intron-mediated enhancement of constitutive splicing. The NtFAD3 gene, which encodes a tobacco microsome ω-3 fatty acid desaturase, has a 552 nucleotide-long 5′ UTR intron (intron 1), and the other seven introns are located in the coding sequence. The splicing of the 5′ half region of the NtFAD3 was studied through an in vivo splicing assay using Arabidopsis leaf explants. The low splicing efficiency of intron 2 was much improved when the assay construct harbored intron 1. Deletion of intron 1 and the replacement of intron 1 to the NtFAD3 intron 8 decreased the splicing efficiency of intron 2. The splicing enhancers were redundant and dispersed in the 5′ splice site-proximal, 284-nucleotides region of intron 1. In addition, the interaction among the cis-elements, i.e., the splicing enhancers in the intron 1 and exon 2, were necessary for the efficient splicing of intron 2. The 5′ UTR intron-mediated constitutive splicing was partially inhibited when an SR-like protein, SR45, was deficient. These results indicated a novel function of the 5′ UTR intron, namely an enhancement of the constitutive splicing.  相似文献   

13.
14.
15.
In crown-gall tumor tissue obtained from leaves of Bryophyllum daigremontianum an adenosine 3:5-cyclic phosphate (3:5-cyclic-AMP) degrading activity increases up to 2.5 fold until the fifth day after inoculation with Agrobacterium tumefaciens, declining to the value of the control in the solid tumor. Theophylline up to 1 mmol l–1 given to wounded leaves of Bryophyllum daigremontianum has no effect on the number of tumors. The effect of higher concentrations given over extended periods can be explained otherwise. Therefore it seems likely that the 3:5-cyclic-AMP phosphodiesterase (EC 3.1.4.17) has no effect on transformation and growth of crown-gall tumors in Bryophyllum daigremontianum.  相似文献   

16.
Summary Cytosolic adenylate cyclase activity from rat seminiferous tubules is inhibited by L-triiodothyronine (L-T3). In a typical dose-response curve, using Mn-ATP as substrate, no effect is observed at 10−10 M L-T3; about 15 to 25% inhibition is found in the range between 10−9 and 10−6 M L-T3 and finally a sharp enzyme inhibition is evident at increasing hormone concentrations from 10−6 to 10−4 M. Incubation of decapsulated testes with L-T3 leads to a decrease of intracellular cyclic AMP levels. Dose-response relationships for such effect are similar to those found for adenylate cyclase activity. In this case a clear response is observed at 10−8 M L-T3.  相似文献   

17.
18.
The 3′ maturation of chloroplast pre-mRNAs in Chlamydomonas proceeds via endonucleolytic cleavage, exonucleolytic trimming of the upstream cleavage product, and rapid degradation of the downstream moiety. However, the cis elements and trans factors remain to be characterized in detail. In the case of atpB, a 300 nucleotide processing determinant (PD), consisting of an inverted repeat (IR) and endonuclease cleavage site (ECS), directs 3′ maturation. To further characterize the PD, 15 variants were examined in vivo in ectopic contexts. This revealed that the IR, and nucleotides 15–37 downstream of the ECS stimulate processing. A candidate trans factor for 3′ maturation was subsequently functionally analyzed. This factor is encoded by the nuclear locus MCD4, and the mcd4 mutant was known to accumulate abnormally 3′-processed chloroplast mRNAs. When the mcd4 mutation was crossed into strains containing reporter genes with insertions of several PD versions, processing was reduced in some cases. This caused accumulation of RNA sequences downstream of the PD, which are normally degraded. From these data, it can be suggested that MCD4 facilitates the endonucleolytic cleavage step in 3′ end maturation of atpB and perhaps other mRNAs, by interacting with the IR, RNA downstream of the IR, or with proteins bound there. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
20.
Summary Uterine tissue from neonatal mice was incubated in vitro at 0° C for 1 h in a medium containing 1×10-8 M 3H-estradiol with or without 1×10-4M dibutyryl cyclic AMP. In some incubations the temperature was raised to 37° C for 15 min after incubation in the cold, in others the temperature was kept at 0° C during this 15 min period. The tissue was frozen in liquid propane cooled in liquid nitrogen, sectioned at 2 or 4 microns, and autoradiograms prepared according to the dry-mount procedure. cAMP increases the cellular uptake of 3H-estradiol in uterine tissue. After rising the temperature to 37° C, grains appeared over the nuclei. cAMP at low temperature increased the cellular uptake of 3H-estradiol, but the grains were not associated with the nuclei. In the autoradiograms the grain number above the epithelium was markedly less than above the stroma.This work has been supported by grants from the Norwegian Research Council for Science and the Humanities, and from the Norwegian Cancer Society (Landsforeningen mot Kreft)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号