首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Membrane proteins in a biological membrane are surrounded by a shell or annulus of 'solvent' lipid molecules. These lipid molecules in general interact rather non-specifically with the protein molecules, although a few 'hot-spots' may be present on the protein where anionic lipids bind with high affinity. Because of the low structural specificity of most of the annular sites, the composition of the lipid annulus will be rather similar to the bulk lipid composition of the membrane. The structures of the solvent lipid molecules are important in determining the conformational state of a membrane protein, and hence its activity, through charge and hydrogen bonding interactions between the lipid headgroups and residues in the protein, and through hydrophobic matching between the protein and the surrounding lipid bilayer. Evidence is also accumulating for the presence of 'co-factor' lipid molecules binding with high specificity to membrane proteins, often between transmembrane alpha-helices, and often being essential for activity.  相似文献   

2.
Hereditary spherocytosis (HS) is the most common red cell membrane defect resulting from protein abnormalities. However, changes in red cell membrane proteins in HS remain under-investigated. We therefore evaluated red cell membrane proteome in non-splenectomized, mild-degree HS patients (n = 9) compared to healthy individuals (n = 5). Proteins derived from the red cell membranes of each subject were resolved in each two-dimensional gel and visualized by Deep Purple fluorescence staining. Spot matching and quantitative intensity analysis revealed 56 differentially expressed protein spots (41 increased and 15 decreased), which were then successfully identified by quadrupole time-of-flight mass spectrometry. Among these, seven isoforms/subunits of spectrin were markedly increased (up to 10.51 folds), whereas two isoforms/subunits of band-3 protein were decreased approximately 50% as compared to normal red cells. However, two isoforms/subunits of protein 4.1 were increased, while another isoform/subunit was decreased. All these significantly altered proteins were subjected to global protein network analysis using Ingenuity Pathways Analysis tool, which revealed three important networks related to HS, including Network I: Cell death, genetic and hematological disorders; Network II: Cell cycle, carbohydrate metabolism and molecular transport; and Network III: Genetic and hematological disorders, cell-to-cell signaling and interactions. These data offer many opportunities and new roadmaps for further functional studies to better understand the biology and pathogenic mechanisms of HS.  相似文献   

3.
Computer simulations of three unsaturated phospholipids in a membrane environment have been carried out using Langevin dynamics and a mean-field based on the Marcelja model. The applicability of the mean-field to model unsaturated lipids was judged by comparison to available experimental NMR data. The results show that the mean-field methodology and the parameters developed for saturated lipids are applicable in simulations of unsaturated molecules, indicating that these simulations have good predictive capabilities. Single molecule simulations, each 100 ns in length, of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-elaidoyl-sn-glycero-3-phosphocholine (PEPC), and 1-palmitoyl-2-isolinoleoyl-sn-glycero-3-phosphocholine (PiLPC) reveal similarities between PEPC and DPPC. The presence of the trans double bond in PEPC has a minimum impact on the structural and dynamic properties of the molecule, which is probably the reason that isolated trans double bonds are rare in biological lipids. POPC exhibits different behavior, especially in the calculated average interchain distances, because of the cis double bond. The position of the two double bonds in PiLPC imparts special properties to the molecule.  相似文献   

4.
The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results.  相似文献   

5.
Computer simulations of dipalmitoylphosphatidylcholine (DPPC) have been performed using Langevin dynamics and a Marcelja-type mean field. This work has focused on the dynamics of the choline head group to parameterize the empirical constraints against phosphorus-carbon dipolar couplings (Dp-c) as measured by nuclear magnetic resonance (13C-NMR). The results show good agreement with experimental values at constraints equivalent to the choline tilt observed in joint refinement of x-ray diffraction and neutron diffraction scatterings. Quadrupolar splittings for the alpha and beta positions are also calculated and compared with 2H-NMR experiments. The model predicts torsional transition rates around the alpha-beta bonds and for the two C-O-P-O torsions. It also predicts T1 relaxation times for the alpha and beta carbons.  相似文献   

6.
This study describes a new protein digestion protocol in which a variety of detergents can be used to solubilize membrane proteins and facilitate trypsin digestion with higher efficiency. In this protocol, proteins are dissolved in solutions containing various detergents and directly incorporated into a polyacrylamide gel matrix without electrophoresis. Detergents are subsequently eliminated from the gel matrix while proteins are still immobilized in the gel matrix. After in-gel digestion of proteins, LC-MS/MS is used to analyze the extracted peptides for protein identification. The uniqueness of the protocol is that it allows usage of a variety of detergents in the starting solution without interfering with LC-MS/MS analysis. We hereby demonstrate that different detergents, including ionic SDS, non-ionic Triton X-100 and n-octyl beta-d-glucopyranoside, and zwitterionic CHAPS, can be used to achieve maximum solubilization of membrane proteins with minimal interference with LC-MS/MS analysis. Enhanced digestions, i.e. improved number and intensity of detected peptides, are also demonstrated for digestion-resistant proteins such as myoglobin, ubiquitin, and bacteriorhodopsin. An additional advantage of the Tube-Gel digestion protocol is that, even without electrophoresis separation, it allows high throughput analysis of complex protein mixtures when coupled with LC-MS/MS. The protocol was used to analyze a complex membrane protein mixture prepared from prostate cancer cells. The protocol involves only a single digestion and 2.5 h of LC-MS/MS analysis and identified 178 membrane proteins. In comparison, the same membrane fraction was resolved by SDS-PAGE, and 20 gel slices were excised and individually digested and analyzed by LC-MS/MS. The more elaborate effort demanded more than 50 h of LC-MS/MS analysis and identified 268 proteins. The new Tube-Gel digestion protocol is an alternative method for high throughput analysis of membrane proteins.  相似文献   

7.
Amphitropic proteins: a new class of membrane proteins   总被引:16,自引:0,他引:16  
  相似文献   

8.
9.
The formation of vesicle-like structures (termed surfactosomes) and lamellar sheets from solutions containing ammonium perfluoroocanoate (APFO) is illustrated using conventional and cryo-transmission electron microscopy. It is shown how this detergent can be used for the solubilisation, reconstitution, and 2-D crystallisation of membrane proteins as demonstrated for the major protein of the membrane sector of the V-type H+-ATPase (16-kDa protein). Electron microscopical analysis of 2-D crystals of the 16-kDa protein (a = b = 13.0 ± 0.2 nm with γ = 90° and p4 projection symmetry) revealed a unit cell comprising four dimeric complexes of the 16-kDa protein the significance of which is discussed.  相似文献   

10.
Formin proteins are potent regulators of actin dynamics. Most eukaryotes have multiple formin isoforms, suggesting diverse cellular roles. Formins are modular proteins, containing a series of domains and functional motifs. The Formin homology 2 (FH2) domain binds actin filament barbed ends and moves processively as these barbed ends elongate or depolymerize. The FH1 domain influences FH2 domain function through binding to the actin monomer-binding protein, profilin. Outside of FH1 and FH2, amino acid similarity between formins decreases, suggesting diverse mechanisms for regulation and cellular localization. Some formins are regulated by auto-inhibition through interaction between the diaphanous inhibitory domain (DID) and diaphanous auto-regulatory domain (DAD), and activated by Rho GTPase binding to GTPase-binding domains (GBD). Other formins lack DAD, DID and GBD, and their regulatory mechanisms await elucidation.  相似文献   

11.
Integral membrane proteins (iMPs) are challenging targets for structure determination because of the substantial experimental difficulties involved in their sample preparation. Accordingly, success rates of large-scale structural genomics consortia are much lower for this class of molecules compared to globular targets, underscoring the pressing need for predictive strategies to identify iMPs that are more likely to overcome laboratory bottlenecks. On the basis of the target status information available in the TargetDB repository, we describe the first large-scale analysis of experimental behavior of iMPs. Using information on recalcitrant and propagating iMP targets as negative and positive sets, respectively, we present naive Bayes classifiers capable of predicting, from sequence alone, those proteins that are more amenable to cloning, expression, and solubilization studies. Protein sequences are represented in the space of 72 features, including amino acid composition, occurrence of amino acid groups, ratios between residue groups, and hydrophobicity measures. Taking into account unequal representation of main taxonomic groups in the TargetDB, sequence database had a beneficial effect on the prediction results. The classifiers achieve accuracies of 70%, 63-70%, and 61% in predicting the amenability of iMPs for cloning, expression, and solubilization, respectively, thus making them useful tools in target selection for structure determination. Our assessment of prediction results clearly demonstrates that classifiers based on single features do not possess acceptable discriminative power and that the experimental behavior of iMPs is imprinted in their primary sequence through relationships between a restricted set of key properties. In most cases, sets of 10-20 protein features were found actually relevant, most notably, the content of isoleucine, valine, and positively-charged residues.  相似文献   

12.
Liang GZ  Ma XY  Li YC  Lv FL  Yang L 《Bio Systems》2011,105(1):101-106
This article offers a novel sequence-based approach to discriminate outer membrane proteins (OMPs). The first step is to use a new representation approach, factor analysis scales of generalized amino acid information (FASGAI) representing hydrophobicity, alpha and turn propensities, bulky properties, compositional characteristics, local flexibility and electronic properties, etc., to characterize sequences of OMPs and non-OMPs. The subsequent data is then transformed into a uniform matrix by the auto cross covariance (ACC). The second step is to develop discrimination predictors of OMPs from non-OMPs using a support vector machine (SVM). The SVM predictors thus successfully produce a high Matthews correlation coefficient (MCC) of 0.916 on 208 OMPs from non-OMPs including 206 α-helical membrane proteins and 673 globular proteins by a fivefold cross validation test. Meanwhile, overall MCC values of 0.923 and 0.930 are obtained for the discrimination OMPs from the α-helical membrane proteins and the globular proteins, respectively. The results demonstrate that the FASGAI-ACC-SVM combination approach shows great prospect of application in the field of bioinformatics or proteomics studies.  相似文献   

13.
14.
The ability to quantitatively compare protein levels across different regions of the brain to identify disease mechanisms remains a fundamental research challenge. It requires both a robust method to efficiently isolate proteins from small amounts of tissue and a differential technique that provides a sensitive and comprehensive analysis of these proteins. Here, we describe a proteomic approach for the quantitative mapping of membrane proteins between mouse fore- and hindbrain regions. The approach focuses primarily on a recently developed method for the fractionation of membranes and on-membrane protein digestion, but incorporates off-line SCX-fractionation of the peptide mixture and nano-LC-MS/MS analysis using an LTQ-FT-ICR instrument as part of the analytical method. Comparison of mass spectral peak intensities between samples, mapping of peaks to peptides and protein sequences, and statistical analysis were performed using in-house differential analysis software (DAS). In total, 1213 proteins were identified and 967 were quantified; 81% of the identified proteins were known membrane proteins and 38% of the protein sequences were predicted to contain transmembrane helices. Although this paper focuses primarily on characterizing the efficiency of this purification method from a typical sample set, for many of the quantified proteins such as glutamate receptors, GABA receptors, calcium channel subunits, and ATPases, the observed ratios of protein abundance were in good agreement with the known mRNA expression levels and/or intensities of immunostaining in rostral and caudal regions of murine brain. This suggests that the approach would be well-suited for incorporation in more rigorous, larger scale quantitative analysis designed to achieve biological significance.  相似文献   

15.
Identification of rare hydrophobic membrane proteins is a major biological problem that is limited by the specific biochemical approaches required to extract these proteins from membranes and purify them. This is especially true for membranes, such as plastid envelope membranes, that have a high lipid content, present a wide variety of specific functions and therefore contain a large number of unique, but minor, proteins. We have optimized a procedure, based on the differential solubilization of membrane proteins in chloroform/methanol mixtures, to extract and concentrate the most hydrophobic proteins from chloroplast envelope membrane preparations, while more hydrophilic proteins were excluded. In addition to previously characterized chloroplast envelope proteins, such as the phosphate/triose phosphate translocator, we have identified new proteins that were shown to contain putative transmembrane α-helices. Moreover, using different chloroform/methanol mixtures, we have obtained differential solubilization of envelope proteins as a function of their hydrophobicity. All the proteins identified were genuine chloroplast envelope proteins, most of them being localized within the inner membrane. Our procedure enables direct mapping (by classical SDS-PAGE) and identification of hydrophobic membrane proteins, whatever their isoelectric point was, that are minor components of specific subcellular compartments. Thus, it complements other techniques that give access to peripheral membrane proteins. If applied to various cell membranes, it is anticipated that it can expedite the identification of hydrophobic proteins involved in transport systems for ions or organic solutes, or it may act as signal receptors or to control metabolic processes and vesicle trafficking.  相似文献   

16.
Pathways of structural relaxation triggered by ionization of internal groups in staphylococcal nuclease (SNase) were studied through multiple self-guided Langevin dynamics (SGLD) simulations. Circular dichroism, steady-state Trp fluorescence, and nuclear magnetic resonance spectroscopy have shown previously that variants of SNase with internal Glu, Asp, and Lys at positions 66 or 92, and Arg at position 66, exhibit local reorganization or global unfolding when the internal ionizable group is charged. Except for Arg-66, these internal ionizable groups have unusual pKa values and are neutral at physiological pH. The structural trends observed in the simulations are in general agreement with experimental observations. The I92D variant, which unfolds globally upon ionization of Asp-92, in simulations often exhibits extensive hydration of the protein core, and sometimes also significant perturbations of the β-barrel. In the crystal structure of the V66R variant, the β1 strand from the β-barrel is domain-swapped; in the simulations, the β1 strand is sometimes partially released. The V66K variant, which in solutions shows reorganization of six residues at the C-terminus of helix α1 and perturbations in the β-barrel structure, exhibits fraying of three residues of helix α1 in one simulation, and perturbations and partial unfolding of three β-strands in a few other simulations. In sharp contrast, very small structural changes were observed in simulations of the wild-type protein. The simulations indicate that charging of internal groups frequently triggers penetration of water into the protein interior. The pKa values of Asp-92 and Arg-66 calculated with continuum methods on SGLD-relaxed structures reached the normal values in most simulations. Detailed analysis of accuracy and performance of SGLD demonstrates that SGLD outperforms LD in sampling of alternative protein conformations without loss of the accuracy and level of detail characteristic of regular LD.  相似文献   

17.
Electron crystallography and atomic force microscopy allow the study of two-dimensional membrane protein crystals. While electron crystallography provides atomic scale three-dimensional density maps, atomic force microscopy gives insight into the surface structure and dynamics at sub-nanometer resolution. Importantly, the membrane protein studied is in its native environment and its function can be assessed directly. The approach allows both the atomic structure of the membrane protein and the dynamics of its surface to be analyzed. In this way, the function-related conformational changes can be assessed, thus providing a detailed insight on the molecular mechanisms of essential biological processes.  相似文献   

18.
We report a cell-free approach for expressing and inserting integral membrane proteins into water-soluble particles composed of discoidal apolipoprotein-lipid bilayers. Proteins are inserted into the particles, circumventing the need of extracting and reconstituting the product into membrane vesicles. Moreover, the planar nature of the membrane support makes the protein freely accessible from both sides of the lipid bilayer. Complexes are successfully purified by means of the apoplipoprotein component or by the carrier protein. The method significantly enhances the solubility of a variety of membrane proteins with different functional roles and topologies. Analytical assays for a subset of model membrane proteins indicate that proteins are correctly folded and active. The approach provides a platform amenable to high-throughput structural and functional characterization of a variety of traditionally intractable drug targets.  相似文献   

19.
20.
In this work, we introduce a generalized, global numerical methodology for analysis of binding phenomena in complex macromolecular assemblies. On the basis of a numerical algorithm (EQS) to solve systems of simultaneous free energy equations, binding profiles of simple to highly complex interacting systems can be analyzed over any concentration region without any need to generate an analytical form to describe the data. The output of the numerical algorithm is the concentration of each individual species in solution, allowing the generation of all possible binding profiles of the system (e.g., protein saturation by ligand). We present here the application of this approach to the DNA-protein subunit-ligand interactions of the trp repressor system as a typical example. From a practical point of view, the analysis program is capable of the rapid and simultaneous analysis of multiple binding profiles in terms of internally consistent sets of free energies. Given both the enormous complexity, as well as the underlying subtlety, involved in the regulation of biological function, the present generalized approach to analyzing macromolecular binding should find wide applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号