共查询到20条相似文献,搜索用时 15 毫秒
1.
中心体是哺乳动物细胞内的微管组织中心,参与纺锤体的装配,因此在胞质分裂中起重要调控作用。最新发现的中心体相关蛋白Cep55(centrosomal protein,55kD)属于卷曲螺旋(coiled-coil)蛋白质家族成员,其基因定位于人染色体10q23.33。该蛋白质在多种正常组织及肿瘤细胞中均有表达,与细胞周期中的中心体和中间体偶联,被Erk2、Cdk1及Plk1共同磷酸化后发挥细胞周期调控作用。其研究对细胞周期的调控及对肿瘤发生的认识将产生极其重要的意义。 相似文献
2.
Masaharu Suzuki Yutaka Sato Shan Wu Byung-Ho Kang Donald R. McCarty 《The Plant cell》2015,27(8):2288-2300
Genetic networks that determine rates of organ initiation and organ size are key regulators of plant architecture. Whereas several genes that influence the timing of lateral organ initiation have been identified, the regulatory pathways in which these genes operate are poorly understood. Here, we identify a class of genes implicated in regulation of the lateral organ initiation rate. Loss-of-function mutations in the MATE transporter encoded by maize (Zea mays) Big embryo 1 (Bige1) cause accelerated leaf and root initiation as well as enlargement of the embryo scutellum. BIGE1 is localized to trans-Golgi, indicating a possible role in secretion of a signaling molecule. Interestingly, phenotypes of bige1 bear striking similarity to cyp78a mutants identified in diverse plant species. We show that a CYP78A gene is upregulated in bige1 mutant embryos, suggesting a role for BIGE1 in feedback regulation of a CYP78A pathway. We demonstrate that accelerated leaf formation and early flowering phenotypes conditioned by mutants of Arabidopsis thalianaBIGE1 orthologs are complemented by maize Bige1, showing that the BIGE1 transporter has a conserved function in regulation of lateral organ initiation in plants. We propose that BIGE1 is required for transport of an intermediate or product associated with the CYP78A pathway. 相似文献
3.
The Importance of cGMP Signaling in Sensory Cilia for Body Size Regulation in Caenorhabditis elegans
Manabi Fujiwara Takahiro Hino Ryuta Miyamoto Hitoshi Inada Ikue Mori Makoto Koga Koji Miyahara Yasumi Ohshima Takeshi Ishihara 《Genetics》2015,201(4):1497-1510
The body size of Caenorhabditis elegans is thought to be controlled by sensory inputs because many mutants with sensory cilium structure defects exhibit small body size. The EGL-4 cGMP-dependent protein kinase acts in sensory neurons to reduce body size when animals fail to perceive sensory signals. In addition to body size control, EGL-4 regulates various other behavioral and developmental pathways, including those involved in the regulation of egg laying and chemotaxis behavior. Here we have identified gcy-12, which encodes a receptor-type guanylyl cyclase, as a gene involved in the sensory regulation of body size. Analyses with GFP fusion constructs showed that gcy-12 is expressed in several sensory neurons and localizes to sensory cilia. Genetic analyses indicated that GCY-12 acts upstream of EGL-4 in body size control but does not affect other EGL-4 functions. Our studies indicate that the function of the GCY-12 guanylyl cyclase is to provide cGMP to the EGL-4 cGMP-dependent kinase only for limited tasks including body size regulation. We also found that the PDE-2 cyclic nucleotide phosphodiesterase negatively regulates EGL-4 in controlling body size. Thus, the cGMP level is precisely controlled by GCY-12 and PDE-2 to determine body size through EGL-4, and the defects in the sensory cilium structure may disturb the balanced control of the cGMP level. The large number of guanylyl cyclases encoded in the C. elegans genome suggests that EGL-4 exerts pleiotropic effects by partnering with different guanylyl cyclases for different downstream functions. 相似文献
4.
Spastin and p60-katanin are AAA family proteins that participate in microtubule severing, while lipotransin, another AAA family
protein is a hormone sensitive lipase interacting protein. Sequence alignment analysis suggests that lipotransin and human
p60-katanin are the orthologs of each other. Studies identified that insulin may negatively regulate ATPase activity of lipotransin.
To reveal the effects of insulin on regulation of severing activity of p60-katanin and spastin, hippocampal neurons over-expressing
spastin and p60-katanin were treated with IGF-1. Changes in neuronal branching by considering the total process lengths and
average process numbers were quantitatively analyzed. According to the results of this study, total process lengths of hippocampal
neurons and average process numbers remained similar in control and p60-katanin over-expressing neurons upon IGF-1 treatment,
while significant decrease was observed in spastin over-expressing neurons. This study indicated that IGF-1 participates differently
in the regulation of spastin and p60-katanin in terms of neuronal branching. 相似文献
5.
The AMP-Activated Protein Kinase Is Involved in the Regulation of Ketone Body Production by Astrocytes 总被引:1,自引:0,他引:1
Cristina Blázquez Angela Woods María L de Ceballos David Carling Manuel Guzmán 《Journal of neurochemistry》1999,73(4):1674-1682
The possible role of the AMP-activated protein kinase (AMPK), a highly conserved stress-activated kinase, in the regulation of ketone body production by astrocytes was studied. AMPK activity in rat cortical astrocytes was three times higher than in rat cortical neurons. AMPK in astrocytes was shown to be functionally active. Thus, incubation of astrocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a cell-permeable activator of AMPK, stimulated both ketogenesis from palmitate and carnitine palmitoyltransferase I. This was concomitant to a decrease of intracellular malonyl-CoA levels and an inhibition of acetyl-CoA carboxylase/fatty acid synthesis and 3-hydroxy-3-methylglutaryl-CoA reductase/cholesterol synthesis. Moreover, in microdialysis experiments AICAR was shown to stimulate brain ketogenesis markedly. The effect of chemical hypoxia on AMPK and the ketogenic pathway was studied subsequently. Incubation of astrocytes with azide led to a remarkable drop of fatty acid beta-oxidation. However, activation of AMPK during hypoxia compensated the depression of beta-oxidation, thereby sustaining ketone body production. This effect seemed to rely on the cascade hypoxia --> increase of the AMP/ATP ratio --> AMPK stimulation --> acetyl-CoA carboxylase inhibition --> decrease of malonyl-CoA concentration --> carnitine palmitoyltransferase I deinhibition --> enhanced ketogenesis. Furthermore, incubation of neurons with azide blunted lactate oxidation, but not 3-hydroxybutyrate oxidation. Results show that (a) AMPK plays an active role in the regulation of ketone body production by astrocytes, and (b) ketone bodies produced by astrocytes during hypoxia might be a substrate for neuronal oxidative metabolism. 相似文献
6.
7.
Kaibo Lin Wenan Qiang Mengyi Zhu Yan Ding Qinghua Shi Xia Chen Emese Zsiros Kun Wang Xiaodi Yang Takeshi Kurita Eugene Yujun Xu 《Cell reports》2019,26(9):2434-2450.e6
8.
Mia-Maria Per?l? Satu M?nnist? Niina E. Kaartinen Eero Kajantie Clive Osmond David J. P. Barker Liisa M. Valsta Johan G. Eriksson 《PloS one》2012,7(9)
Background
Small body size at birth is associated with an increased risk of cardiovascular disease and type 2 diabetes. Dietary habits are tightly linked with these disorders, but the association between body size at birth and adult diet has been little studied. We examined the association between body size at birth and intake of foods and macronutrients in adulthood.Methodology/Principal Findings
We studied 1797 participants, aged 56 to 70, of the Helsinki Birth Cohort Study, whose birth weight and length were recorded. Preterm births were excluded. During a clinical study, diet was assessed with a validated food-frequency questionnaire. A linear regression model adjusted for potential confounders was used to assess the associations. Intake of fruits and berries was 13.26 g (95% confidence interval [CI]: 0.56, 25.96) higher per 1 kg/m3 increase in ponderal index (PI) at birth, and 83.16 g (95% CI: 17.76, 148.56) higher per 1 kg higher birth weight. One unit higher PI at birth was associated with 0.14% of energy (E%) lower intake of fat (95% CI: -0.26, -0.03) and 0.18 E% higher intake of carbohydrates (95% CI: 0.04, 0.32) as well as 0.08 E% higher sucrose (95% CI: 0.00, 0.15), 0.05 E% higher fructose (95% CI: 0.01, 0.09), and 0.18 g higher fiber (95% CI: 0.02, 0.34) intake in adulthood. Similar associations were observed between birth weight and macronutrient intake.Conclusions
Prenatal growth may modify later life food and macronutrient intake. Altered dietary habits could potentially explain an increased risk of chronic disease in individuals born with small body size. 相似文献10.
Eukaryotic organelles evolve to support the lifestyle of evolutionarily related organisms. In the fungi, filamentous Ascomycetes possess dense-core organelles called Woronin bodies (WBs). These organelles originate from peroxisomes and perform an adaptive function to seal septal pores in response to cellular wounding. Here, we identify Leashin, an organellar tether required for WB inheritance, and associate it with evolutionary variation in the subcellular pattern of WB distribution. In Neurospora, the leashin (lah) locus encodes two related adjacent genes. N-terminal sequences of LAH-1 bind WBs via the WB–specific membrane protein WSC, and C-terminal sequences are required for WB inheritance by cell cortex association. LAH-2 is localized to the hyphal apex and septal pore rim and plays a role in colonial growth. In most species, WBs are tethered directly to the pore rim, however, Neurospora and relatives have evolved a delocalized pattern of cortex association. Using a new method for the construction of chromosomally encoded fusion proteins, marker fusion tagging (MFT), we show that a LAH-1/LAH-2 fusion can reproduce the ancestral pattern in Neurospora. Our results identify the link between the WB and cell cortex and suggest that splitting of leashin played a key role in the adaptive evolution of organelle localization. 相似文献
11.
12.
Beno?t Renvoisé Rell L. Parker Dong Yang Joanna C. Bakowska James H. Hurley Craig Blackstone 《Molecular biology of the cell》2010,21(19):3293-3303
Hereditary spastic paraplegias (HSPs, SPG1-46) are inherited neurological disorders characterized by lower extremity spastic weakness. Loss-of-function SPG20 gene mutations cause an autosomal recessive HSP known as Troyer syndrome. The SPG20 protein spartin localizes to lipid droplets and endosomes, and it interacts with tail interacting protein 47 (TIP47) as well as the ubiquitin E3 ligases atrophin-1-interacting protein (AIP)4 and AIP5. Spartin harbors a domain contained within microtubule-interacting and trafficking molecules (MIT) at its N-terminus, and most proteins with MIT domains interact with specific ESCRT-III proteins. Using yeast two-hybrid and in vitro surface plasmon resonance assays, we demonstrate that the spartin MIT domain binds with micromolar affinity to the endosomal sorting complex required for transport (ESCRT)-III protein increased sodium tolerance (Ist)1 but not to ESCRT-III proteins charged multivesicular body proteins 1–7. Spartin colocalizes with Ist1 at the midbody, and depletion of Ist1 in cells by small interfering RNA significantly decreases the number of cells where spartin is present at midbodies. Depletion of spartin does not affect Ist1 localization to midbodies but markedly impairs cytokinesis. A structure-based amino acid substitution in the spartin MIT domain (F24D) blocks the spartin–Ist1 interaction. Spartin F24D does not localize to the midbody and acts in a dominant-negative manner to impair cytokinesis. These data suggest that Ist1 interaction is important for spartin recruitment to the midbody and that spartin participates in cytokinesis. 相似文献
13.
Maika Deffieu Ingrid Bhatia-Ki??ová Bénédicte Salin Anne Galinier Stéphen Manon Nadine Camougrand 《The Journal of biological chemistry》2009,284(22):14828-14837
The antioxidant N-acetyl-l-cysteine prevented the
autophagy-dependent delivery of mitochondria to the vacuoles, as examined by
fluorescence microscopy of mitochondria-targeted green fluorescent protein,
transmission electron microscopy, and Western blot analysis of mitochondrial
proteins. The effect of N-acetyl-l-cysteine was specific
to mitochondrial autophagy (mitophagy). Indeed, autophagy-dependent activation
of alkaline phosphatase and the presence of hallmarks of non-selective
microautophagy were not altered by N-acetyl-l-cysteine.
The effect of N-acetyl-l-cysteine was not related to its
scavenging properties, but rather to its fueling effect of the glutathione
pool. As a matter of fact, the decrease of the glutathione pool induced by
chemical or genetical manipulation did stimulate mitophagy but not general
autophagy. Conversely, the addition of a cell-permeable form of glutathione
inhibited mitophagy. Inhibition of glutathione synthesis had no effect in the
strain Δuth1, which is deficient in selective mitochondrial
degradation. These data show that mitophagy can be regulated independently of
general autophagy, and that its implementation may depend on the cellular
redox status.Autophagy is a major pathway for the lysosomal/vacuolar delivery of
long-lived proteins and organelles, where they are degraded and recycled.
Autophagy plays a crucial role in differentiation and cellular response to
stress and is conserved in eukaryotic cells from yeast to mammals
(1,
2). The main form of autophagy,
macroautophagy, involves the non-selective sequestration of large portions of
the cytoplasm into double-membrane structures termed autophagosomes, and their
delivery to the vacuole/lysosome for degradation. Another process,
microautophagy, involves the direct sequestration of parts of the cytoplasm by
vacuole/lysosomes. The two processes coexist in yeast cells but their extent
may depend on different factors including metabolic state: for example, we
have observed that nitrogen-starved lactate-grown yeast cells develop
microautophagy, whereas nitrogen-starved glucose-grown cells preferentially
develop macroautophagy (3).Both macroautophagy and microautophagy are essentially non-selective, in
the way that autophagosomes and vacuole invaginations do not appear to
discriminate the sequestered material. However, selective forms of autophagy
have been observed (4) that
target namely peroxisomes (5,
6), chromatin
(7,
8), endoplasmic reticulum
(9), ribosomes
(10), and mitochondria
(3,
11–13).
Although non-selective autophagy plays an essential role in survival by
nitrogen starvation, by providing amino acids to the cell, selective autophagy
is more likely to have a function in the maintenance of cellular structures,
both under normal conditions as a “housecleaning” process, and
under stress conditions by eliminating altered organelles and macromolecular
structures
(14–16).
Selective autophagy targeting mitochondria, termed mitophagy, may be
particularly relevant to stress conditions. The mitochondrial respiratory
chain is both the main site and target of
ROS4 production
(17). Consequently, the
maintenance of a pool of healthy mitochondria is a crucial challenge for the
cells. The progressive accumulation of altered mitochondria
(18) caused by the loss of
efficiency of the maintenance process (degradation/biogenesis de
novo) is often considered as a major cause of cellular aging
(19–23).
In mammalian cells, autophagic removal of mitochondria has been shown to be
triggered following induction/blockade of apoptosis
(23), suggesting that
autophagy of mitochondria was required for cell survival following
mitochondria injury (14).
Consistent with this idea, a direct alteration of mitochondrial permeability
properties has been shown to induce mitochondrial autophagy
(13,
24,
25). Furthermore, inactivation
of catalase induced the autophagic elimination of altered mitochondria
(26). In the yeast
Saccharomyces cerevisiae, the alteration of
F0F1-ATPase biogenesis in a conditional mutant has been
shown to trigger autophagy
(27). Alterations of
mitochondrial ion homeostasis caused by the inactivation of the
K+/H+ exchanger was shown to cause both autophagy and
mitophagy (28). We have
reported that treatment of cells with rapamycin induced early ROS production
and mitochondrial lipid oxidation that could be inhibited by the hydrophobic
antioxidant resveratrol (29).
Furthermore, resveratrol treatment impaired autophagic degradation of both
cytosolic and mitochondrial proteins and delayed rapamycin-induced cell death,
suggesting that mitochondrial oxidation events may play a crucial role in the
regulation of autophagy. This existence of regulation of autophagy by ROS has
received molecular support in HeLa cells
(30): these authors showed
that starvation stimulated ROS production, namely H2O2,
which was essential for autophagy. Furthermore, they identified the cysteine
protease hsAtg4 as a direct target for oxidation by
H2O2. This provided a possible connection between the
mitochondrial status and regulation of autophagy.Investigations of mitochondrial autophagy in nitrogen-starved lactate-grown
yeast cells have established the existence of two distinct processes: the
first one occurring very early, is selective for mitochondria and is dependent
on the presence of the mitochondrial protein Uth1p; the second one occurring
later, is not selective for mitochondria, is not dependent on Uth1p, and is a
form of bulk microautophagy
(3). The absence of the
selective process in the Δuth1 mutant strongly delays and
decreases mitochondrial protein degradation
(3,
12). The putative protein
phosphatase Aup1p has been also shown to be essential in inducing mitophagy
(31). Additionally several Atg
proteins were shown to be involved in vacuolar sequestration of mitochondrial
GFP (3,
12,
32,
33). Recently, the protein
Atg11p, which had been already identified as an essential protein for
selective autophagy has also been reported as being essential for mitophagy
(33).The question remains as to identify of the signals that trigger selective
mitophagy. It is particularly intriguing that selective mitophagy is activated
very early after the shift to a nitrogen-deprived medium
(3). Furthermore, selective
mitophagy is very active on lactate-grown cells (with fully differentiated
mitochondria) but is nearly absent in glucose-grown cells
(3). In the present paper, we
investigated the relationships between the redox status of the cells and
selective mitophagy, namely by manipulating glutathione. Our results support
the view that redox imbalance is a trigger for the selective elimination of
mitochondria. 相似文献
14.
Stephen K. Godin Camille Meslin Faiz Kabbinavar Dominique S. Bratton-Palmer Christina Hornack Michael J. Mihalevic Kyle Yoshida Meghan Sullivan Nathan L. Clark Kara A. Bernstein 《Genetics》2015,199(4):1023-1033
The Saccharomyces cerevisiae Shu2 protein is an important regulator of Rad51, which promotes homologous recombination (HR). Shu2 functions in the Shu complex with Shu1 and the Rad51 paralogs Csm2 and Psy3. Shu2 belongs to the SWS1 protein family, which is characterized by its SWIM domain (CXC...Xn...CXH), a zinc-binding motif. In humans, SWS1 interacts with the Rad51 paralog SWSAP1. Using genetic and evolutionary analyses, we examined the role of the Shu complex in mitotic and meiotic processes across eukaryotic lineages. We provide evidence that the SWS1 protein family contains orthologous genes in early-branching eukaryote lineages (e.g., Giardia lamblia), as well as in multicellular eukaryotes including Caenorhabditis elegans and Drosophila melanogaster. Using sequence analysis, we expanded the SWIM domain to include an invariant alanine three residues after the terminal CXH motif (CXC…Xn…CXHXXA). We found that the SWIM domain is conserved in all eukaryotic orthologs, and accordingly, in vivo disruption of the invariant residues within the canonical SWIM domain inhibits DNA damage tolerance in yeast and protein-protein interactions in yeast and humans. Furthermore, using evolutionary analyses, we found that yeast and Drosophila Shu2 exhibit strong coevolutionary signatures with meiotic proteins, and in yeast, its disruption leads to decreased meiotic progeny. Together our data indicate that the SWS1 family is an ancient and highly conserved eukaryotic regulator of meiotic and mitotic HR. 相似文献
15.
Natalya G. Andreyenkova Tatyana D. Kolesnikova Igor V. Makunin Galina V. Pokholkova Lidiya V. Boldyreva Tatyana Yu. Zykova Igor F. Zhimulev Elena S. Belyaeva 《PloS one》2013,8(12)
Drosophila chromosomes are organized into distinct domains differing in their predominant chromatin composition, replication timing and evolutionary conservation. We show on a genome-wide level that genes whose order has remained unaltered across 9 Drosophila species display late replication timing and frequently map to the regions of repressive chromatin. This observation is consistent with the existence of extensive domains of repressive chromatin that replicate extremely late and have conserved gene order in the Drosophila genome. We suggest that such repressive chromatin domains correspond to a handful of regions that complete replication at the very end of S phase. We further demonstrate that the order of genes in these regions is rarely altered in evolution. Substantial proportion of such regions significantly coincide with large synteny blocks. This indicates that there are evolutionary mechanisms maintaining the integrity of these late-replicating chromatin domains. The synteny blocks corresponding to the extremely late-replicating regions in the D. melanogaster genome consistently display two-fold lower gene density across different Drosophila species. 相似文献
16.
SYNOPSIS. Most animal phyla lack specialized respiratory surfacesand all phyla contain groups that, for some part of their lifehistory, depend entirely upon integumental diffusion of respiratorygases. Animals that are diffusion-limited, yet function aerobicallyare generally small with large surface areas and there has beenconvergence for this among all phyla including the coelomateinvertebrates. Acoelomates lack specialized respiratory structuresbut have highly modified integuments, functional specializations,and features ranging from symbioses to air gulping that compensatefor diffusion limitation. The diversity of structures functioningfor integumentary respiration is much greater among invertebratesthan vertebrates. Among the higher invertebrates with respiratorysurfaces, accessory integumentary O2 uptake is usually 20 to50% of total respiration. The high diffusion constant of O2in air minimizes boundary effects on gas transfer and permitslarger body size, although this is limited by dry conditions.Terrestrial annelids and flatworms, both confined to moist habitats,are larger than aquatic forms which often have accessory gills.Size differences between terrestrial forms in these two phylareflect the presence of a circulation in the annelids. Ontogenetictransitions from skin breathing to other respiratory structuresoccur among marine invertebrates and vertebrates. Vertebratesapparently exercise greater integratory control over integumentalrespiration through adjustment of ventilation and perfusion;however, it is not known if these processes occur in some invertebrates. 相似文献
17.
18.
Single-stranded DNA-binding protein 1 (SSB1) plays an important role in the DNA damage response and maintenance of genomic stability. Here, by using protein affinity purification, we have identified Integrator3 (INT3) as a novel partner of SSB1. INT3 forms a complex with SSB1 by constitutively interacting with SSB1 regardless of DNA damage. However, following DNA damage, along with SSB1, INT3 relocates to the DNA damage sites and regulates the accumulation of TopBP1 and BRCA1 there. Moreover, INT3 controls DNA damage-induced Chk1 activation and G2/M checkpoint activation. In addition, INT3 is involved in homologous recombination repair by regulating Rad51 foci formation following DNA damage. Taken together, these results demonstrate that INT3 plays a key role in the DNA damage response.The DNA damage response, including DNA damage checkpoint activation and DNA damage repair, ensures genomic stability under genotoxic stress. Among various types of DNA damage, DNA double-strand breaks (DSBs)3 are the most deleterious, easily causing chromosomal loss, fusion, and translocation. However, cells can sense and repair DNA DSBs by activating evolutionarily conserved pathways (1–3). Following DNA DSBs, ATM, ATR, and DNAPK, a family homologous to phosphoinositide 3-kinases (4, 5), are activated and phosphorylate histone H2AX at the DNA damage sites (6). Subsequently, phospho-H2AX (γH2AX) provides the platform for accumulation of a larger group of DNA damage response factors, such as MDC1, BRCA1, 53BP1, and TopBP1 (2, 7–9), at the DNA damage sites. Translocalization of these proteins to the DNA DSBs facilitates DNA damage checkpoint activation by activating downstream Chk1/Chk2 kinases, which arrest the cell cycle at G1, S, or G2 phase (10). In addition, it also enhances the efficiency of DNA damage repair by recruiting and stabilizing the DNA repair machinery at the DNA damage sites (11).Among these important mediators, single-stranded DNA (ssDNA)-binding proteins play important roles during the DNA damage response. For example, following DNA damage, the MRN complex recognizes DNA DSB ends and processes the blunt ends into ssDNA overhangs (12). The replication protein A (RPA) complex, a group of ssDNA-binding proteins, immediately coats these ssDNA overhangs and loads and activates the ATR·ATRIP complex at the DNA damage sites (13). Meanwhile, the RPA complex protects ssDNA from nucleolytic resection and facilitates Rad51 filament formation along ssDNA overhangs, which is a key step for homologous recombination repair (14). Moreover, RPA70 and RPA32 subunits in the complex could recruit several DNA damage response factors to the DNA damage sites that enhance the efficacy of DNA damage repair (15).Besides the RPA complex, several other ssDNA-binding proteins have been identified to participate in the DNA damage response recently. One of them is ssDNA-binding protein 1 (SSB1) (16). Human SSB1 is a 211-amino acid polypeptide with an N-terminal oligosaccharide/oligonucleotide-binding (OB) domain. It has been shown that SSB1 is phosphorylated by ATM and relocates to the DNA damage site following DNA DSBs. Loss of SSB1 impairs DNA damage-induced checkpoint activation and induces genomic instability. Like the RPA complex, SSB1 participates in homologous recombination by facilitating Rad51·ssDNA filament formation and stabilizing Rad51 at the DNA damage sites. Interestingly, SSB1 has a homolog SSB2 that contains an almost identical OB domain at the N terminus. However, the function of SSB2 in the DNA damage response is not clear yet.To examine the molecular mechanism and functional pathway of SSB1 and SSB2 in the DNA damage response, we have searched for functional partners of SSB1 and SSB2 by using protein affinity purification. We have found Integrator3 (INT3) to be a common partner of both SSB1 and SSB2. Like SSB1, following DNA damage, INT3 relocates to the DNA damage sites and regulates ATR activation. Moreover, INT3 not only participates in DNA damage checkpoint activation but also regulates homologous recombination repair. Taken together, we have found a novel mediator in the DNA damage response. 相似文献
19.