首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deposition of α-synuclein fibrils is one hallmark of Parkinson's disease. Here, we investigate how ganglioside lipids, present in high amounts in neurons and exosomes, influence the aggregation kinetics of α-synuclein. Gangliosides, as well as, other anionic lipid species with small or large headgroups were found to induce conformational changes of α-synuclein monomers and catalyse their aggregation at mildly acidic conditions. Although the extent of this catalytic effect was slightly higher for gangliosides, the results imply that charge interactions are more important than headgroup chemistry in triggering aggregation. In support of this idea, uncharged lipids with large headgroups were not found to induce any conformational change and only weakly catalyse aggregation. Intriguingly, aggregation was also triggered by free ganglioside headgroups, while these caused no conformational change of α-synuclein monomers. Our data reveal that partially folded α-synuclein helical intermediates are not required species in triggering of α-synuclein aggregation.  相似文献   

2.
Indolic derivatives can affect fibril growth of amyloid forming proteins. The neurotransmitter serotonin (5-HT) is of particular interest, as it is an endogenous molecule with a possible link to neuropsychiatric symptoms of Parkinson disease. A key pathomolecular mechanism of Parkinson disease is the misfolding and aggregation of the intrinsically unstructured protein α-synuclein. We performed a biophysical study to investigate an influence between these two molecules. In an isolated in vitro system, 5-HT interfered with α-synuclein amyloid fiber maturation, resulting in the formation of partially structured, SDS-resistant intermediate aggregates. The C-terminal region of α-synuclein was essential for this interaction, which was driven mainly by electrostatic forces. 5-HT did not bind directly to monomeric α-synuclein molecules and we propose a model where 5-HT interacts with early intermediates of α-synuclein amyloidogenesis, which disfavors their further conversion into amyloid fibrils.  相似文献   

3.
J. Neurochem. (2012) 122, 883-890. ABSTRACT: Amyloid β-protein (Aβ) and α-synuclein (αS) are the primary components of amyloid plaques and Lewy bodies (LBs), respectively. Previous in vitro and in vivo studies have suggested that interactions between Aβ and αS are involved in the pathogenesis of Alzheimer's disease and LB diseases. However, the seeding effects of their aggregates on their aggregation pathways are not completely clear. To investigate the cross-seeding effects of Aβ and αS, we examined how sonicated fibrils or cross-linked oligomers of Aβ40, Aβ42, and αS affected their aggregation pathways using thioflavin T(S) assay and electron microscopy. Fibrils and oligomers of Aβ40, Aβ42, and αS acted as seeds, and affected the aggregation pathways within and among species. The seeding effects of αS fibrils were higher than those of Aβ40 and Aβ42 fibrils in the Aβ40 and Aβ42 aggregation pathways, respectively. We showed that Aβ and αS acted as seeds and affected each other's aggregation pathways in vitro, which may contribute to our understanding of the molecular mechanisms of interactions between Alzheimer's disease and LB diseases pathologies.  相似文献   

4.
α-Synuclein is the major amyloidogenic component observed in the Lewy bodies of Parkinson's disease. Amyloid fibrils of α-synuclein prepared in vitro were instantaneously disintegrated by dequalinium (DQ). Double-headed cationic amphipathic structure of DQ with two aminoquinaldinium rings at both ends turned out to be crucial to exert the disintegration activity. The defibrillation activity was shown to be selective toward the fibrils of α-synuclein and Aβ40 while the other β2-microglobulin amyloid fibrils were not susceptible so much. Besides the common cross β-sheet conformation of amyloid fibrils, therefore, additional specific molecular interactions with the target amyloidogenic proteins have been expected to be involved for DQ to exhibit its defibrillation activity. The disintegrating activity of DQ was also evaluated in vivo with the yeast system overexpressing α-synuclein-GFP. With the DQ treatment, the intracellular green inclusions turned into green smears, which resulted in the enhanced cell death. Based on the data, the previous observation that DQ led to the predominant protofibril formation of α-synuclein could be explained by the dual function of DQ showing both the facilitated self-oligomerization of α-synuclein and the instantaneous defibrillation of its amyloid fibrils. In addition, amyloidosis-related cytotoxicity has been demonstrated to be amplified by the fragmentation of mature amyloid fibrils by DQ.  相似文献   

5.
Amyloid formation is a pathological hallmark of many neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's. While it is unknown how these disorders are initiated, in vitro and cellular experiments confirm the importance of membranes. Ubiquitous in vivo, membranes induce conformational changes in amyloidogenic proteins and in some cases, facilitate aggregation. Reciprocally, perturbations in the bilayer structure can be induced by amyloid formation. Here, we review studies in the last 10 years describing α-synuclein (α-syn) and its interactions with membranes, detailing the roles of anionic and zwitterionic lipids in aggregation, and their contribution to Parkinson's disease. We summarize the impact of α-syn - comparing monomeric, oligomeric, and fibrillar forms - on membrane structure, and the effect of membrane remodeling on amyloid formation. Finally, perspective on future studies investigating the interplay between α-syn aggregation and membranes is discussed. This article is part of a Special Issue entitled: Amyloids.  相似文献   

6.
α-Synuclein (α-Syn) is a presynaptic protein that is accumulated in its amyloid form in the brains of Parkinson's patients. Although its biological function remains unclear, α-syn has been suggested to bind to synaptic vesicles and facilitate neurotransmitter release. Recently, studies have found that α-syn induces membrane tubulation, highlighting a potential mechanism for α-syn to stabilize highly curved membrane structures which could have both functional and dysfunctional consequences. To understand how membrane remodeling by α-syn affects amyloid formation, we have studied the α-syn aggregation process in the presence of phosphatidylglycerol (PG) micellar tubules, which were the first reported example of membrane tubulation by α-syn. Aggregation kinetics, β-sheet content, and macroscopic protein-lipid structures were observed by Thioflavin T fluorescence, circular dichroism spectroscopy and transmission electron microscopy, respectively. Collectively, the presence of PG micellar tubules formed at a stochiometric (L/P = 1) ratio was found to stimulate α-syn fibril formation. Moreover, transmission electron microscopy and solid-state nuclear magnetic resonance spectroscopy revealed the co-assembly of PG and α-syn into fibril structures. However, isolated micellar tubules do not form fibrils by themselves, suggesting an important role of free α-syn monomers during amyloid formation. In contrast, fibrils did not form in the presence of excess PG lipids (≥L/P = 50), where most of the α-syn molecules are in a membrane-bound α-helical form. Our results provide new mechanistic insights into how membrane tubules modulate α-syn amyloid formation and support a pivotal role of protein–lipid interaction in the dysfunction of α-syn.  相似文献   

7.
Parkinson's disease is a common neurodegenerative disorder characterized by α-synuclein (α-Syn)-containing Lewy body formation and selective loss of dopaminergic neurons in the substantia nigra. We have demonstrated the modulating effect of noopept, a novel proline-containing dipeptide drug with nootropic and neuroprotective properties, on α-Syn oligomerization and fibrillation by using thioflavin T fluorescence, far-UV CD, and atomic force microscopy techniques. Noopept does not bind to a sterically specific site in the α-Syn molecule as revealed by heteronuclear two-dimensional NMR analysis, but due to hydrophobic interactions with toxic amyloid oligomers, it prompts their rapid sequestration into larger fibrillar amyloid aggregates. Consequently, this process rescues the cytotoxic effect of amyloid oligomers on neuroblastoma SH-SY5Y cells as demonstrated by using cell viability assays and fluorescent staining of apoptotic and necrotic cells and by assessing the level of intracellular oxidative stress. The mitigating effect of noopept against amyloid oligomeric cytotoxicity may offer additional benefits to the already well-established therapeutic functions of this new pharmaceutical.  相似文献   

8.
The deposition of α-synuclein fibrils is one hallmark of Parkinson's disease. Here, we investigate how ganglioside lipids, present in high amounts in neurons and exosomes, influence the aggregation kinetics of α-synuclein. Gangliosides, as well as, other anionic lipid species with small or large headgroups were found to induce conformational changes of α-synuclein monomers and catalyse their aggregation at mildly acidic conditions. Although the extent of this catalytic effect was slightly higher for gangliosides, the results imply that charge interactions are more important than headgroup chemistry in triggering aggregation. In support of this idea, uncharged lipids with large headgroups were not found to induce any conformational change and only weakly catalyse aggregation. Intriguingly, aggregation was also triggered by free ganglioside headgroups, while these caused no conformational change of α-synuclein monomers. Our data reveal that partially folded α-synuclein helical intermediates are not required species in triggering of α-synuclein aggregation.  相似文献   

9.
Understanding how small molecules affect amyloid formation is of major biomedical and pharmaceutical importance due to the association of amyloid with incurable diseases including Alzheimer's, Parkinson's, and type II diabetes. Using solution state (1)H NMR, we demonstrate that curcumin, a planar biphenolic compound found in the Indian spice turmeric, delays the self-assembly of islet amyloid polypeptide to NMR-invisible assemblies. Accompanying circular dichroism studies show that curcumin disassembles α-helix in maturing assemblies of IAPP. The amount of α-helix disassembled correlates with predicted and experimentally determined helical content of IAPP obtained by others. Taken together, these results indicate that curcumin modulates IAPP self-assembly by unfolding α-helix on pathway to amyloid. The implications of this work in the elucidation of the mechanism for amyloid formation by IAPP in the presence of curcumin are discussed.  相似文献   

10.
Fibrillar α-synuclein (AS) is the major component of Lewy bodies, the pathological hallmark of Parkinson's disease. Mouse AS (mAS) aggregates much faster than human AS (hAS), although mAS differs from hAS at only seven positions in its primary sequence. Currently, little is known about the site-specific structural differences between mAS and hAS fibrils. Here, we applied state-of-the-art solid-state nuclear magnetic resonance (ssNMR) methods to structurally characterize mAS fibrils. The assignment strategy employed a set of high-resolution 2D and 3D ssNMR spectra recorded on uniformly [(13)C, (15)N], [1-(13)C]glucose, and [2-(13)C]glucose labeled mAS fibrils. An almost complete resonance assignment (96% of backbone amide (15)N and 93% of all (13)C nuclei) was obtained for residues from Gly41 to Val95, which form the core of mAS fibrils. Six β-strands were identified to be within the fibril core of mAS based on a secondary chemical shift and NHHC analysis. Intermolecular (13)C:(15)N labeled restraints obtained from mixed 1:1 (13)C/(15)N-labeled mAS fibrils reveal a parallel, in-register supramolecular β-sheet arrangement. The results were compared in detail to recent structural studies on hAS fibrils and indicate the presence of a structurally conserved motif comprising residues Glu61-Lys80.  相似文献   

11.
Parkinson's disease is an age-related movement disorder characterized by the presence in the mid-brain of amyloid deposits of the 140-amino-acid protein AS (α-synuclein). AS fibrillation follows a nucleation polymerization pathway involving diverse transient prefibrillar species varying in size and morphology. Similar to other neurodegenerative diseases, cytotoxicity is currently attributed to these prefibrillar species rather than to the insoluble aggregates. Nevertheless, the underlying molecular mechanisms responsible for cytotoxicity remain elusive and structural studies may contribute to the understanding of both the amyloid aggregation mechanism and oligomer-induced toxicity. It is already recognized that soluble oligomeric AS species adopt β-sheet structures that differ from those characterizing the fibrillar structure. In the present study we used ATR (attenuated total reflection)-FTIR (Fourier-transform infrared) spectroscopy, a technique especially sensitive to β-sheet structure, to get a deeper insight into the β-sheet organization within oligomers and fibrils. Careful spectral analysis revealed that AS oligomers adopt an antiparallel β-sheet structure, whereas fibrils adopt a parallel arrangement. The results are discussed in terms of regions of the protein involved in the early β-sheet interactions and the implications of such conformational arrangement for the pathogenicity associated with AS oligomers.  相似文献   

12.
We assessed the intracellular association states of the Parkinson''s disease related protein α-synuclein (AS) in living cells by transfection with a functional recombinant mutant protein (AS-C4) bearing a tetracysteine tag binding the fluorogenic biarsenical ligands FlAsH and ReAsH, The aggregation states of AS-C4 were assessed by in situ microscopy of molecular translational mobility with FRAP (fluorescence recovery after photobleaching) and of local molecular density with confocal fluorescence anisotropy (CFA). FRAP recovery was quantitative and rapid in regions of free protein, whereas AS in larger aggregates was>80% immobile. A small 16% recovery characterized by an apparent diffusion constant of 0.03–0.04 µm2/s was attributed to the dynamics of smaller, associated forms of AS-C4 and the exchange of mobile species with the larger immobile aggregates. By CFA, the larger aggregates exhibited high brightness and very low anisotropy, consistent with homoFRET between closely packed AS, for which a Förster distance (R o) of 5.3 nm was calculated. Other bright regions had high anisotropy values, close to that of monomeric AS, and indicative of membrane-associated protein with both low mobility and low degree of association. The anisotropy-fluorescence intensity correlations also revealed regions of free protein or of small aggregates, undetectable by conventional fluorescence imaging alone. The combined strategy (FRAP+CFA) provides a highly sensitive means for elucidating both the dynamics and structural features of protein aggregates and other intracellular complexes in living cells, and can be extended to other amyloid systems and to drug screening protocols.  相似文献   

13.
Neurobiology of α-synuclein   总被引:4,自引:0,他引:4  
  相似文献   

14.
The major component of neural inclusions that are the pathological hallmark of Parkinson's disease are amyloid fibrils of the protein α-synuclein (aS). Here we investigated if the disease-related mutation A30P not only modulates the kinetics of aS aggregation, but also alters the structure of amyloid fibrils. To this end we optimized the method of quenched hydrogen/deuterium exchange coupled to NMR spectroscopy and performed two-dimensional proton-detected high-resolution magic angle spinning experiments. The combined data indicate that the A30P mutation does not cause changes in the number, location and overall arrangement of β-strands in amyloid fibrils of aS. At the same time, several residues within the fibrillar core retain nano-second dynamics. We conclude that the increased pathogenicity related to the familial A30P mutation is unlikely to be caused by a mutation-induced change in the conformation of aS aggregates.  相似文献   

15.
α-Synuclein has been implicated in the pathogenesis of Parkinson’s disease. Although it is highly conserved, its physiological function has not yet been elucidated in detail. In an effort to define the function of α-synuclein, interacting proteins were screened in phage display assays. Prenylated Rab acceptor protein 1 (PRA1) was identified as an interacting partner. A selective interaction between α-synuclein and PRA1 was confirmed by coimmunoprecipitation and GST pull-down assays. PRA1 and α-synuclein were colocalized in N2a neuronal cells. Cotransfection of α-synuclein and PRA1 caused vesicles to accumulate in the periphery of the cytosol in neuronal cells, suggesting that overexpression of α-synuclein hinders proper vesicle trafficking and recycling as a result of the interaction between α-synuclein and PRA1.  相似文献   

16.
This review describes different ways to achieve and monitor reproducible aggregation of α-synuclein, a key protein in the development of Parkinson's disease. For most globular proteins, aggregation is promoted by partially denaturing conditions which compromise the native state without destabilizing the intermolecular contacts required for accumulation of regular amyloid structure. As a natively disordered protein, α-synuclein can fibrillate under physiological conditions and this process is actually stimulated by conditions that promote structure formation, such as low pH, ions, polyamines, anionic surfactants, fluorinated alcohols and agitation. Reproducibility is a critical issue since α-synuclein shows erratic fibrillation behavior on its own. Agitation in combination with glass beads significantly reduces the variability of aggregation time curves, but the most reproducible aggregation is achieved by sub-micellar concentrations of SDS, which promote the rapid formation of small clusters of α-synuclein around shared micelles. Although the fibrils produced this way have a different appearance and secondary structure, they are rich in cross-β structure and are amenable to high-throughput screening assays. Although such assays at best provide a very simplistic recapitulation of physiological conditions, they allow the investigator to focus on well-defined molecular events and may provide the opportunity to identify, e.g. small molecule inhibitors of aggregation that affect these steps. Subsequent experiments in more complex cellular and whole-organism environments can then validate whether there is any relation between these molecular interactions and the broader biological context.  相似文献   

17.
Aggregates of the protein α-synuclein are the main component of Lewy bodies, the hallmark of Parkinson's disease. α-Synuclein aggregates are also found in many human neurodegenerative diseases known as synucleinopathies. In vivo, α-synuclein associates with membranes and adopts α-helical conformations. The details of how α-synuclein converts from the functional native state to amyloid aggregates remain unknown. In this study, we use maltose-binding protein (MBP) as a carrier to crystallize segments of α-synuclein. From crystal structures of fusions between MBP and four segments of α-synuclein, we have been able to trace a virtual model of the first 72 residues of α-synuclein. Instead of a mostly α-helical conformation observed in the lipid environment, our crystal structures show α-helices only at residues 1-13 and 20-34. The remaining segments are extended loops or coils. All of the predicted fiber-forming segments based on the 3D profile method are in extended conformations. We further show that the MBP fusion proteins with fiber-forming segments from α-synuclein can also form fiber-like nano-crystals or amyloid-like fibrils. Our structures suggest intermediate states during amyloid formation of α-synuclein.  相似文献   

18.
19.
α-Synuclein comprises the fibrillar core of Lewy bodies, which is one of the histologically defining lesions of Parkinson’s disease. Previously, we screened for α-synuclein substitution mutants that do not form fibrils. For preventative or therapeutic uses, it is essential to suppress the oligomerization/fibrillation of the wild-type and PD-linked α-synuclein proteins. Here we have examined the effects of fibrillation-retarded α-synuclein mutants on fibril formation by wild-type and PD-linked α-synuclein molecules. Six self-aggregation-defective α-synuclein mutants completely inhibit the fibrillation of both wild-type and Parkinson’s disease-linked α-synuclein variants. These results suggest future applications for gene therapy: the transplantation of a fibrillation-blocking mutant α-synuclein gene into individuals who carry an early-onset PD-associated α-synuclein allele. Short synthetic peptides derived from these mutant sequences may also serve as a lead compound for the development of therapeutics for Parkinson’s disease.  相似文献   

20.
In neurodegenerative disorders of the aging population, misfolded proteins, such as PrPSc, α-synuclein, amyloid β protein and tau, can interact resulting in enhanced aggregation, cross seeding and accelerated disease progression. Previous reports have shown that in Creutzfeldt-Jakob disease and scrapie, α-synuclein accumulates near PrPSc deposits. However, it is unclear if pre-existing human α-synuclein aggregates modified prion disease pathogenesis, or if PrPSc exacerbates the α-synuclein pathology. Here, we inoculated infectious prions into aged α-synuclein transgenic (tg) and non-transgenic littermate control mice by the intracerebral route. Remarkably, inoculation of RML and mNS prions into α-synuclein tg mice resulted in more extensive and abundant intraneuronal and synaptic α-synuclein accumulation. In addition, infectious prions led to the formation of perineuronal α-synuclein deposits with a neuritic plaque-like appearance. Prion pathology was unmodified by the presence of α-synuclein. However, with the mNS prion strain there was a modest but significant acceleration in the time to terminal prion disease in mice having α-synuclein aggregates as compared with non-tg mice. Taken together, these studies support the notion that PrPSc directly or indirectly promotes α-synuclein pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号