首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Excessive proliferation of vascular smooth muscle cells (VSMCs) is a critical element in the development of several vascular pathologies, particularly in atherosclerosis and in restenosis due to angioplasty. We have shown that butyrate, a powerful antiproliferative agent, a strong promoter of cell differentiation and an inducer of apoptosis inhibits VSMC proliferation at physiological concentrations with no cytotoxicity. In the present study, we have used cDNA array technology to unravel the molecular basis of the antiproliferative effect of butyrate on VSMCs. To assess the involvement of gene expression in butyrate-inhibited VSMC proliferation, proliferating VSMCs were exposed to 5 mmol/1 butyrate 1 through 5 days after plating. Expression profiles of 1,176 genes representing different functional classes in untreated control and butyrate treated VSMCs were compared. A total of 111 genes exhibiting moderate (2.0–5.0 fold to strong (> 5.0 fold) differential expression were identified. Analysis of these genes indicates that butyrate treatment mainly alters the expression of four different functional classes of genes, which include: 43 genes implicated in cell growth and differentiation, 13 genes related to stress response, 11 genes associated with vascular function and 8 genes normally present in neuronal cells. Examination of differentially expressed cell growth and differentiation related genes indicate that butyrate-inhibited VSMC proliferation appears to involve down-regulation of genes that encode several positive regulators of cell growth and up-regulation of some negative regulators of growth or differentiation inducers. Some of the down-regulated genes include proliferating cell nuclear antigen (PCNA), retinoblastoma susceptibility related protein p130 (pRb), cell division control protein 2 homolog (cdc2), cyclin B1, cell division control protein 20 homolog (p55cdc), high mobility group (HMG) 1 and 2 and several others. Whereas the up-regulated genes include cyclin D1, p21WAF1, p14INK4B/p15INK5B, Clusterin, inhibitor of DNA binding 1 (ID1) and others. On the other hand, butyrate-responsive stress-related genes include some of the members of heat shock protein (HSP), glutathione-s-transferase (GST), and glutathione peroxidase (GSH-PXs) and cytochrome P450 (CYP) families. Additionally, several genes related to vascular and neuronal function are also responsive to butyrate treatment. Although involvement of genes that encode stress response, vascular and neuronal functional proteins in cell proliferation is not clear, cDNA expression array data appear to suggest that they may play a role in the regulation of cell proliferation. However, cDNA expression profiles indicate that butyrate-inhibited VSMC proliferation involves combined action of a proportionally large number of both positive and negative regulators of growth, which ultimately causes growth arrest of VSMCs. Furthermore, these butyrate-induced differential gene expression changes are not only consistent with the antiproliferative effect of butyrate but are also in agreement with the roles that these gene products play in cell proliferation.  相似文献   

3.
4.
5.
4-Hydroxynonenal (HNE), a highly reactive product of lipid peroxidation, has an antiproliferative effect in several tumor cell lines and provokes alteration of cell cycle progression in HL-60 cells. HNE down-regulates c-myc expression in K562, HL-60, and MEL cells. This prompted us to study the cascade of phenomena that, starting from the CKIs expression and the phosphorylation of pRb, arrives at the E2F binding to consensus sequence in the P2 promoter of the c-myc gene. Treatment of HL-60 cells with HNE (1 microM) causes a p53-independent increase of p21(WAF1/CIP1) expression, pRb dephosphorylation, a decrease of low molecular weight E2F complexes and an increase of high molecular weight E2F complexes bound to P2 c-myc promoter. E2F4 expression is reduced by HNE treatment as well as the amount of pRb/E2F4 complexes, whereas the amount of pRb/E2F1 complexes is increased. In conclusion, HNE can affect the pRb/E2F pathway by modifying the expression of several genes involved in the control of cell proliferation.  相似文献   

6.
It has been proposed that C. elegans LIN-9 functions downstream of CDK4 in a pathway that regulates cell proliferation. Here, we report that mammalian BARA/LIN-9 is a predominantly nuclear protein that inhibits cell proliferation. More importantly, we demonstrate that BARA/LIN-9 also acts downstream of cyclin D/CDK4 in mammalian cells since (i) its antiproliferative effect is partially blocked by coexpression of cyclin D1, and (ii) a mutant form that lacks the first 84 amino acids rescues several phenotypic alterations observed in mice null for cdk4. Interestingly, mutation of BARA/LIN-9 restores the expression of E2F target genes in CDK4 null MEFs, indicating that the wild-type protein plays a role in the expression of genes required for the G1/S transition.  相似文献   

7.
Metformin is a biguanide widely prescribed to treat Type II diabetes that has gained interest as an antineoplastic agent. Recent work suggests that metformin directly antagonizes cancer cell growth through its actions on complex I of the mitochondrial electron transport chain (ETC). However, the mechanisms by which metformin arrests cancer cell proliferation remain poorly defined. Here we demonstrate that the metabolic checkpoint kinases AMP-activated protein kinase (AMPK) and LKB1 are not required for the antiproliferative effects of metformin. Rather, metformin inhibits cancer cell proliferation by suppressing mitochondrial-dependent biosynthetic activity. We show that in vitro metformin decreases the flow of glucose- and glutamine-derived metabolic intermediates into the Tricarboxylic Acid (TCA) cycle, leading to reduced citrate production and de novo lipid biosynthesis. Tumor cells lacking functional mitochondria maintain lipid biosynthesis in the presence of metformin via glutamine-dependent reductive carboxylation, and display reduced sensitivity to metformin-induced proliferative arrest. Our data indicate that metformin inhibits cancer cell proliferation by suppressing the production of mitochondrial-dependent metabolic intermediates required for cell growth, and that metabolic adaptations that bypass mitochondrial-dependent biosynthesis may provide a mechanism of tumor cell resistance to biguanide activity.  相似文献   

8.
9.
10.
p53 protein is probably the best known tumor suppressor. Earlier reports proved that human breast cancer cells expressing mutant p53 displayed resistance to apoptosis. This study is intended to investigate, the potential applications of RNA interference (RNAi) to block p53 expression, as well as its subsequent effect on cell growth, apoptosis and migration on a triple negative human breast cancer cell line (Hs578T). p53siRNA significantly reduced cell index (CI) compared to the control and we observed an inhibition of cellular migration in the interval of time between 0 and 30 h, as shown in the data obtained by dynamic evaluation using the xCELLigence System. Also, by using PCR-array technology, a panel of 84 key genes involved in apoptosis was investigated. Our studies indicate that the knockdown of p53 expression by siRNA modulates several genes involved in cell death pathways and apoptosis, showing statistically significant gene expression differences for 22 genes, from which 18 were upregulated and 4 were downregulated. The present research also emphasizes the important role of BCL-2 pro-apoptotic family of genes (Bim, Bak, and Bax) in activating apoptosis and reducing cell proliferation by p53siRNA treatment. Death receptors cooperate with BCL-2 pro-apoptotic genes in reducing cell proliferation. The limited success may be due to the activation of the antiapoptotic gene Mcl-1, and it may be associated with the resistance of triple negative breast cancer cells to cancer treatment. Thus, targeting p53siRNA pathways using siRNA may serve as a promising therapeutic strategy for the treatment of breast cancers.  相似文献   

11.
12.
13.
14.
The 2-amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole set are well known compounds with interesting in vitro and in vivo anti-cancer profiles. The aim of this study was an in vitro evaluation of the anti-cancer activity of a new synthesized aminothiadiazole derivative 2-(3-chlorophenyloamino)-5-(2,4-dihydroxyphenyl)- -1,3,4-thiadiazole 4ClABT. The effect on tumor cell proliferation, motility and morphology, DNA synthesis as well as the influence on normal cells was assessed. The antiproliferative activity of 4ClABT in tumor cells derived from peripheral cancers including breast carcinoma (T47D), colon carcinoma (HT-29), thyroid carcinoma (FTC-238), teratoma (P19), and T-cell leukemia (Jurkat E6.1), as well as cancers of the nervous system including rhabdomyosarcoma/medulloblastoma (TE671), brain astrocytoma (MOGGCCM) and glioma (C6) was studied by means of MTT assay. DNA synthesis level was determined in BrdU ELISA test. Wound assay model was applied for tumor cell motility assessment. Morphological changes induced by 4ClABT in cancer and normal cells were analyzed in HE staining specimens. Moreover, the influence of 4ClABT on normal cells including skin fibroblasts (HSF), hepatocytes (Fao), astroglia and neurons was studied by means of LDH assay. The tested compound inhibited the proliferation of tumor cells in dose-dependent fashion. The anti-cancer effect was attributed to decreased DNA synthesis, prominent changes in tumor cell morphology as well as reduced cell motility. In antiproliferative concentrations, 4ClABT was not toxic to normal cells. Our study showed prominent anti-cancer effects of the tested aminothiadiazole derivative in the absence of toxicity in normal cells. The obtained results confirmed the promising anti-cancer profile of previously tested 2-(monohalogenphenylamino)- -5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole derivatives (ClABT - chlorophenyl derivative, FABT and 3FABT - fluorophenyl derivatives and 4BrABT - bromophenyl derivative). The molecular mechanisms and the in vivo activity of aminothiadiazole derivatives will be the subject of further studies.  相似文献   

15.
Pyruvate kinase M2 (PKM2) is a key player in the Warburg effect of cancer cells. However, the mechanisms of regulating PKM2 are not fully elucidated. Here, we identified the protein-serine/threonine kinase PIM2, a known oncogene, as a novel binding partner of PKM2. The interaction between PIM2 and PKM2 was confirmed by multiple biochemical approaches in vitro and in cultured cells. Importantly, we found that PIM2 could directly phosphorylate PKM2 on the Thr-454 residue, resulting in an increase of PKM2 protein levels. Compared with wild type, PKM2 with the phosphorylation-defective mutation displayed a reduced effect on glycolysis, co-activating HIF-1α and β-catenin, and cell proliferation, while enhancing mitochondrial respiration of cancer cells. These findings demonstrate that PIM2-dependent phosphorylation of PKM2 is critical for regulating the Warburg effect in cancer, highlighting PIM2 as a potential therapeutic target.  相似文献   

16.
Recent studies have demonstrated that the anti-diabetic drug, metformin, can exhibit direct antitumoral effects, or can indirectly decrease tumor proliferation by improving insulin sensitivity. Despite these recent advances, the underlying molecular mechanisms involved in decreasing tumor formation are not well understood. In this study, we examined the antiproliferative role and mechanism of action of metformin in MCF-7 cancer cells treated with 10 mM of metformin for 24, 48, and 72 hours. Using BrdU and the MTT assay, it was found that metformin demonstrated an antiproliferative effect in MCF-7 cells that occurred in a time- and concentration- dependent manner. Flow cytometry was used to analyze markers of cell cycle, apoptosis, necrosis and oxidative stress. Exposure to metformin induced cell cycle arrest in G0-G1 phase and increased cell apoptosis and necrosis, which were associated with increased oxidative stress. Gene and protein expression were determined in MCF-7 cells by real time RT-PCR and western blotting, respectively. In MCF-7 cells metformin decreased the activation of IRβ, Akt and ERK1/2, increased p-AMPK, FOXO3a, p27, Bax and cleaved caspase-3, and decreased phosphorylation of p70S6K and Bcl-2 protein expression. Co-treatment with metformin and H2O2 increased oxidative stress which was associated with reduced cell number. In the presence of metformin, treating with SOD and catalase improved cell viability. Treatment with metformin resulted in an increase in p-p38 MAPK, catalase, MnSOD and Cu/Zn SOD protein expression. These results show that metformin has an antiproliferative effect associated with cell cycle arrest and apoptosis, which is mediated by oxidative stress, as well as AMPK and FOXO3a activation. Our study further reinforces the potential benefit of metformin in cancer treatment and provides novel mechanistic insight into its antiproliferative role.  相似文献   

17.
Prostate cancer remains the single most prevalent cancer in men. Standard therapies are still limited and include androgen ablation that initially causes tumor regression. However, tumor cells eventually relapse and develop into a hormone-refractory prostate cancer. One of the current challenges in this disease is to define new therapeutic targets, which have been virtually unchanged in the past 30 years. Recent studies have suggested that the family of enzymes known as the proprotein convertases (PCs) is involved in various types of cancers and their progression. The present study examined PC expression in prostate cancer and validates one PC, namely PACE4, as a target. The evidence includes the observed high expression of PACE4 in all different clinical stages of human prostate tumor tissues. Gene silencing studies targeting PACE4 in the DU145 prostate cancer cell line produced cells (cell line 4-2) with slower proliferation rates, reduced clonogenic activity, and inability to grow as xenografts in nude mice. Gene expression and proteomic profiling of the 4-2 cell line reveals an increased expression of known cancer-related genes (e.g., GJA1, CD44, IGFBP6) that are downregulated in prostate cancer. Similarly, cancer genes whose expression is decreased in the 4-2 cell line were upregulated in prostate cancer (e.g., MUC1, IL6). The direct role of PACE4 in prostate cancer is most likely through the upregulated processing of growth factors or through the aberrant processing of growth factors leading to sustained cancer progression, suggesting that PACE4 holds a central role in prostate cancer.  相似文献   

18.
19.
Sphingosine kinase (Sphk) enzymes are important in intracellular sphingolipid metabolism as well as in the biosynthesis of sphingosine 1-phosphate (S1P), an extracellular lipid mediator. Here, we show that Sphk1 is expressed and is required for small intestinal tumor cell proliferation in Apc Min/+ mice. Adenoma size but not incidence was dramatically reduced in Apc Min/+ Sphk(-/-) mice. Concomitantly, epithelial cell proliferation in the polyps was significantly attenuated, suggesting that Sphk1 regulates adenoma progression. Although the S1P receptors (S1P1R, S1P2R, and S1P3R) are expressed, polyp incidence or size was unaltered in Apc Min/+ S1p2r(-/-), Apc Min/+ S1p3r(-/-), and Apc Min/+ S1p1r(+/-) bigenic mice. These data suggest that extracellular S1P signaling via its receptors is not involved in adenoma cell proliferation. Interestingly, tissue sphingosine content was elevated in the adenomas of Apc Min/+ Sphk1(-/-) mice, whereas S1P levels were not significantly altered. Concomitantly, epithelial cell proliferation and the expression of the G1/S cell cycle regulator CDK4 and c-myc were diminished in the polyps of Apc Min/+ Sphk1(-/-) mice. In rat intestinal epithelial (RIE) cells in vitro, Sphk1 overexpression enhanced cell cycle traverse at the G1/S boundary. In addition, RIE cells treated with sphingosine but not C6-ceramide exhibited reduced cell proliferation, reduced retinoblastoma protein phosphorylation, and cyclin-dependent kinase 4 (Cdk4) expression. Our findings suggest that Sphk1 plays a critical role in intestinal tumor cell proliferation and that inhibitors of Sphk1 may be useful in the control of intestinal cancer.  相似文献   

20.
Human papillomavirus (HPV) E6 and E7 oncogenes are expressed in the great majority of human cervical carcinomas, whereas the viral E2 regulatory gene is usually disrupted in these cancers. To investigate the roles of the papillomavirus E2 genes in the development and maintenance of cervical carcinoma, the bovine papillomavirus (BPV) E2 gene was acutely introduced into cervical carcinoma cell lines by infection with high-titer stocks of simian virus 40-based recombinant viruses. Expression of the BPV E2 protein in HeLa, C-4I, and MS751 cells results in specific inhibition of the expression of the resident HPV type 18 (HPV18) E6 and E7 genes and in inhibition of cell growth. HeLa cells, in which HPV gene expression is nearly completely abolished, undergo a dramatic and rapid inhibition of proliferation, which appears to be largely a consequence of a block in progression from the G1 to the S phase of the cell cycle. Loss of HPV18 gene expression in HeLa cells is also accompanied by a marked increase in the level of the cellular p53 tumor suppressor protein, apparently as a consequence of abrogation of HPV18 E6-mediated destabilization of p53. The proliferation of HT-3 cells, a human cervical carcinoma cell line devoid of detectable HPV DNA, is also inhibited by E2 expression, whereas two other epithelial cell lines that do not contain HPV DNA are not inhibited. Thus, a number of cervical carcinoma cell lines are remarkably sensitive to growth inhibition by the E2 protein. Although BPV E2-mediated inhibition of HPV18 E6 and E7 expression may contribute to growth inhibition in some of the cervical carcinoma cell lines, the BPV E2 protein also appears to exert a growth-inhibitory effect that is independent of its effects on HPV gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号