首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circadian rhythms govern a large array of metabolic and physiological functions. The central clock protein CLOCK has HAT properties. It directs acetylation of histone H3 and of its dimerization partner BMAL1 at Lys537, an event essential for circadian function. We show that the HDAC activity of the NAD(+)-dependent SIRT1 enzyme is regulated in a circadian manner, correlating with rhythmic acetylation of BMAL1 and H3 Lys9/Lys14 at circadian promoters. SIRT1 associates with CLOCK and is recruited to the CLOCK:BMAL1 chromatin complex at circadian promoters. Genetic ablation of the Sirt1 gene or pharmacological inhibition of SIRT1 activity lead to disturbances in the circadian cycle and in the acetylation of H3 and BMAL1. Finally, using liver-specific SIRT1 mutant mice we show that SIRT1 contributes to circadian control in vivo. We propose that SIRT1 functions as an enzymatic rheostat of circadian function, transducing signals originated by cellular metabolites to the circadian clock.  相似文献   

2.
3.
4.
5.
Cardiac function is highly dependent on oxidative energy, which is produced by mitochondrial respiration. Defects in mitochondrial function are associated with both structural and functional abnormalities in the heart. Here, we show that heart-specific ablation of the circadian clock gene Bmal1 results in cardiac mitochondrial defects that include morphological changes and functional abnormalities, such as reduced enzymatic activities within the respiratory complex. Mice without cardiac Bmal1 function show a significant decrease in the expression of genes associated with the fatty acid oxidative pathway, the tricarboxylic acid cycle, and the mitochondrial respiratory chain in the heart and develop severe progressive heart failure with age. Importantly, similar changes in gene expression related to mitochondrial oxidative metabolism are also observed in C57BL/6J mice subjected to chronic reversal of the light-dark cycle; thus, they show disrupted circadian rhythmicity. These findings indicate that the circadian clock system plays an important role in regulating mitochondrial metabolism and thereby maintains cardiac function.  相似文献   

6.
Elevated levels of serum saturated fatty acid palmitate have been shown to promote insulin resistance, increase cellular ROS production, and trigger cell apoptosis in hepatocytes during the development of obesity. However, it remains unclear whether palmitate directly impacts the circadian clock in hepatocytes, which coordinates nutritional inputs and hormonal signaling with downstream metabolic outputs. Here we presented evidence that the molecular clock is a novel target of palmitate in hepatocytes. Palmitate exposure at low dose inhibits the molecular clock activity and suppresses the cyclic expression of circadian targets including Dbp, Nr1d1 and Per2 in hepatocytes. Palmitate treatment does not seem to alter localization or reduce protein expression of BMAL1 and CLOCK, the two core components of the molecular clock in hepatocytes. Instead, palmitate destabilizes the protein-protein interaction between BMAL1-CLOCK in a dose and time-dependent manner. Furthermore, we showed that SIRT1 activators could reverse the inhibitory action of palmitate on BMAL1-CLOCK interaction and the clock gene expression, whereas inhibitors of NAD synthesis mimic the palmitate effects on the clock function. In summary, our findings demonstrated that palmitate inhibits the clock function by suppressing SIRT1 function in hepatocytes.  相似文献   

7.
8.
9.
Acetyl-CoA Carboxylase 1 catalyzes the conversion of acetyl-CoA to malonyl-CoA, the committed step of de novo fatty acid synthesis. As a master regulator of lipid synthesis, acetyl-CoA carboxylase 1 has been proposed to be a therapeutic target for numerous metabolic diseases. We have shown that acetyl-CoA carboxylase 1 activity is reduced in the absence of the lysine acetyltransferase NuA4 in Saccharomyces cerevisiae. This change in acetyl-CoA carboxylase 1 activity is correlated with a change in localization. In wild-type cells, acetyl-CoA carboxylase 1 is localized throughout the cytoplasm in small punctate and rod-like structures. However, in NuA4 mutants, acetyl-CoA carboxylase 1 localization becomes diffuse. To uncover mechanisms regulating acetyl-CoA carboxylase 1 localization, we performed a microscopy screen to identify other deletion mutants that impact acetyl-CoA carboxylase 1 localization and then measured acetyl-CoA carboxylase 1 activity in these mutants through chemical genetics and biochemical assays. Three phenotypes were identified. Mutants with hyper-active acetyl-CoA carboxylase 1 form 1 or 2 rod-like structures centrally within the cytoplasm, mutants with mid-low acetyl-CoA carboxylase 1 activity displayed diffuse acetyl-CoA carboxylase 1, while the mutants with the lowest acetyl-CoA carboxylase 1 activity (hypomorphs) formed thick rod-like acetyl-CoA carboxylase 1 structures at the periphery of the cell. All the acetyl-CoA carboxylase 1 hypomorphic mutants were implicated in sphingolipid metabolism or very long-chain fatty acid elongation and in common, their deletion causes an accumulation of palmitoyl-CoA. Through exogenous lipid treatments, enzyme inhibitors, and genetics, we determined that increasing palmitoyl-CoA levels inhibits acetyl-CoA carboxylase 1 activity and remodels acetyl-CoA carboxylase 1 localization. Together this study suggests yeast cells have developed a dynamic feed-back mechanism in which downstream products of acetyl-CoA carboxylase 1 can fine-tune the rate of fatty acid synthesis.  相似文献   

10.
It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.  相似文献   

11.
12.
13.
14.
15.
Recent studies have correlated metabolic diseases, such as metabolic syndrome and non-alcoholic fatty liver disease, with the circadian clock. However, whether such metabolic changes per se affect the circadian clock remains controversial. To address this, we investigated the daily mRNA expression profiles of clock genes in the liver of a dietary mouse model of non-alcoholic steatohepatitis (NASH) using a custom-made, high-precision DNA chip. C57BL/6J mice fed an atherogenic diet for 5 weeks developed hypercholesterolemia, oxidative stress, and NASH. DNA chip analyses revealed that the atherogenic diet had a great influence on the mRNA expression of a wide range of genes linked to mitochondrial energy production, redox regulation, and carbohydrate and lipid metabolism. However, the rhythmic mRNA expression of the clock genes in the liver remained intact. Most of the circadianly expressed genes also showed 24-h rhythmicity. These findings suggest that the biological clock is protected against such a metabolic derangement as NASH.  相似文献   

16.
The sirtuins are a family of NAD+-dependent protein deacetylases that regulate cell survival, metabolism, and longevity. Three sirtuins, SIRT3–5, localize to mitochondria. Expression of SIRT3 is selectively activated during fasting and calorie restriction. SIRT3 regulates the acetylation level and enzymatic activity of key metabolic enzymes, such as acetyl-CoA synthetase, long-chain acyl-CoA dehydrogenase, and 3-hydroxy-3-methylglutaryl-CoA synthase 2, and enhances fat metabolism during fasting. SIRT5 exhibits demalonylase/desuccinylase activity, and lysine succinylation and malonylation are abundant mitochondrial protein modifications. No convincing enzymatic activity has been reported for SIRT4. Here, we review the emerging role of mitochondrial sirtuins as metabolic sensors that respond to changes in the energy status of the cell and modulate the activities of key metabolic enzymes via protein deacylation.  相似文献   

17.
18.
The efficiency of Nucleotide Excision Repair (NER)process is crucial for maintaining genomic integrity because in many organisms, including humans, it represents the only system able to repair a wide range of DNA damage. The aim of the work was to investigate whether the efficiency of the repair of photoproducts induced by UV-light is affected by the circadian phase at which irradiation occurred. NER activity has been analyzed in human quiescent fibroblasts (in the absence of the cell cycle effect), in which circadian rhythmicity has been synchronized with a pulse of dexamethasone. Our results demonstrate that both DNA damage induction and repair efficiency are strictly dependent on the phase of the circadian rhythm at which the cells are UV-exposed. Furthermore, the differences observed between fibroblasts irradiated at different circadian times (CTs) are abolished when the clock is obliterated. In addition, we observe that chromatin structure is regulated by circadian rhythmicity. Maximal chromatin relaxation occurred at the same CT when photoproduct formation and removal were highest. Our data suggest that the circadian clock regulates both the DNA sensitivity to UV damage and the efficiency of NER by controlling chromatin condensation mainly through histone acetylation.  相似文献   

19.
The Skp1–Cul1–F-box protein (SCF) complex is one of the most well characterized types of ubiquitin ligase (E3), with the E3 activity of the complex being regulated in part at the level of complex formation. Fbxl3 is an F-box protein that is responsible for the ubiquitylation and consequent degradation of cryptochromes (Crys) and thus regulates oscillation of the circadian clock. Here we show that formation of the SCFFbxl3 complex is regulated by substrate binding in vivo. Fbxl3 did not associate with Skp1 and Cul1 to a substantial extent in transfected mammalian cells. Unexpectedly, however, formation of the SCFFbxl3 complex was markedly promoted by forced expression of its substrate Cry1 in these cells. A mutant form of Fbxl3 that does not bind to Cry1 was unable to form an SCF complex, suggesting that interaction of Cry1 with Fbxl3 is essential for formation of SCFFbxl3. In contrast, recombinant Fbxl3 associated with recombinant Skp1 and Cul1 in vitro even in the absence of recombinant Cry1. Domain-swap analysis revealed that the COOH-terminal leucine-rich repeat domain of Fbxl3 attenuates the interaction of Skp1, suggesting that a yet unknown protein associated with the COOH-terminal domain of Fbxl3 and inhibited SCF complex formation. Our results thus provide important insight into the regulation of both SCF ubiquitin ligase activity and circadian rhythmicity.  相似文献   

20.
The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well understood. In this study, we sought to examine how the clock gene Period1 (Per1) regulates the electrical activity in the mouse SCN by transiently and selectively decreasing levels of PER1 through use of an antisense oligodeoxynucleotide. We found that this treatment effectively reduced SCN neural activity. Direct current injection to restore the normal membrane potential partially, but not completely, returned firing rate to normal levels. The antisense treatment also reduced baseline [Ca2+]i levels as measured by Fura2 imaging technique. Whole cell patch clamp recording techniques were used to examine which specific potassium currents were altered by the treatment. These recordings revealed that the large conductance [Ca2+]i-activated potassium currents were reduced in antisense-treated neurons and that blocking this current mimicked the effects of the anti-sense on SCN firing rate. These results indicate that the circadian clock gene Per1 alters firing rate in SCN neurons and raise the possibility that the large conductance [Ca2+]i-activated channel is one of the targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号