首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.  相似文献   

2.
Induction of DNA double strand breaks leads to phosphorylation and focus-formation of H2AX. However, foci of phosphorylated H2AX (γH2AX) appear during DNA replication also in the absence of exogenously applied injury. We measured the amount and the number of foci of γH2AX in different phases of the cell cycle by flow cytometry, sorting and microscopy in 4 malignant B-lymphocyte cell lines. There were no detectable γH2AX and no γH2AX-foci in G1 cells in exponentially growing cells and cells treated with PARP inhibitor (PARPi) for 24 h to create damage and reduce DNA repair. The amount of γH2AX increased immediately upon S phase entry, and about 10 and 30 γH2AX foci were found in mid-S phase control and PARPi-treated cells, respectively. The γH2AX-labeled damage caused by DNA replication was not fully repaired before entry into G2. Intriguingly, G2 cells populated a continuous distribution of γH2AX levels, from cells with a high content of γH2AX and the same number of foci as S phase cells (termed “G2H” compartment), to cells that there were almost negative and had about 2 foci (termed “G2L” compartment). EdU-labeling of S phase cells revealed that G2H was directly populated from S phase, while G2L was populated from G2H, but in control cells also directly from S phase. The length of G2H in particular increased after PARPi treatment, compatible with longer DNA-repair times. Our results show that cells repair replication-induced damage in G2H, and enter mitosis after a 2–3 h delay in G2L.  相似文献   

3.
H2AX is an important factor for chromatin remodeling to facilitate accumulation of DNA damage-related proteins at DNA double-strand break (DSB) sites. In order to further understand the role of H2AX in the DNA damage response (DDR), we attempted to identify H2AX-interacting proteins by proteomics analysis. As a result, we identified nucleolin as one of candidates. Here, we show a novel role of a major nucleolar protein, nucleolin, in DDR. Nucleolin interacted with γ-H2AX and accumulated to laser micro-irradiated DSB damage sites. Chromatin Immunoprecipitation assay also displayed the accumulation of nucleolin around DSB sites. Nucleolin-depleted cells exhibited repression of both ATM-dependent phosphorylation following exposure to γ-ray and subsequent cell cycle checkpoint activation. Furthermore, nucleolin-knockdown reduced HR and NHEJ activity and showed decrease in IR-induced chromatin accumulation of HR/NHEJ factors, agreeing with the delayed kinetics of γ-H2AX focus. Moreover, nucleolin-knockdown decreased MDC1-related events such as focus formation of 53 BP1, RNF168, phosphorylated ATM, and H2A ubiquitination. Nucleolin also showed FACT-like activity for DSB damage-induced histone eviction from chromatin. Taken together, nucleolin could promote both ATM-dependent cell cycle checkpoint and DSB repair by functioning in an MDC1-related pathway through its FACT-like function.  相似文献   

4.
During eukaryotic DNA damage response (DDR), one of the earliest events is the phosphorylation of the C-terminal SQ motif of histone H2AX (H2A in yeasts). In human cells, phosphorylated H2AX (γH2AX) is recognized by MDC1, which serves as a binding platform for the accumulation of a myriad of DDR factors on chromatin regions surrounding DNA lesions. Despite its important role in DDR, no homolog of MDC1 outside of metazoans has been described. Here, we report the characterization of Mdb1, a protein from the fission yeast Schizosaccharomyces pombe, which shares significant sequence homology with human MDC1 in their C-terminal tandem BRCT (tBRCT) domains. We show that in vitro, recombinant Mdb1 protein binds a phosphorylated H2A (γH2A) peptide, and the phospho-specific binding requires two conserved phospho-binding residues in the tBRCT domain of Mdb1. In vivo, Mdb1 forms nuclear foci at DNA double strand breaks (DSBs) induced by the HO endonuclease and ionizing radiation (IR). IR-induced Mdb1 focus formation depends on γH2A and the phospho-binding residues of Mdb1. Deleting the mdb1 gene does not overtly affect DNA damage sensitivity in a wild type background, but alters the DNA damage sensitivity of cells lacking another γH2A binder Crb2. Overexpression of Mdb1 causes severe DNA damage sensitivity in a manner that requires the interaction between Mdb1 and γH2A. During mitosis, Mdb1 localizes to spindles and concentrates at spindle midzones at late mitosis. The spindle midzone localization of Mdb1 requires its phospho-binding residues, but is independent of γH2A. Loss of Mdb1 or mutating its phospho-binding residues makes cells more resistant to the microtubule depolymerizing drug thiabendazole. We propose that Mdb1 performs dual roles in DDR and mitotic spindle regulation.  相似文献   

5.
The DNA damage response (DDR) of a host organism represents an effective antiviral defense that is frequently manipulated and exploited by viruses to promote multiplication. We report here that the large DNA baculoviruses, which require host DDR activation for optimal replication, encode a conserved replication factor, LEF-7, that manipulates the DDR via a novel mechanism. LEF-7 suppresses DDR-induced accumulation of phosphorylated host histone variant H2AX (γ-H2AX), a critical regulator of the DDR. LEF-7 was necessary and sufficient to block γ-H2AX accumulation caused by baculovirus infection or DNA damage induced by means of pharmacological agents. Deletion of LEF-7 from the baculovirus genome allowed γ-H2AX accumulation during virus DNA synthesis and impaired both very late viral gene expression and production of infectious progeny. Thus, LEF-7 is essential for efficient baculovirus replication. We determined that LEF-7 is a nuclear F-box protein that interacts with host S-phase kinase-associated protein 1 (SKP1), suggesting that LEF-7 acts as a substrate recognition component of SKP1/Cullin/F-box (SCF) complexes for targeted protein polyubiquitination. Site-directed mutagenesis demonstrated that LEF-7''s N-terminal F-box is necessary for γ-H2AX repression and Autographa californica multiple nucleopolyhedrovirus (AcMNPV) replication events. We concluded that LEF-7 expedites virus replication most likely by selective manipulation of one or more host factors regulating the DDR, including γ-H2AX. Thus, our findings indicate that baculoviruses utilize a unique strategy among viruses for hijacking the host DDR by using a newly recognized F-box protein.  相似文献   

6.
The DNA damage response (DDR) triggers widespread changes in gene expression, mediated partly by alterations in micro(mi) RNA levels, whose nature and significance remain uncertain. Here, we report that miR-34a, which is upregulated during the DDR, modulates the expression of protein phosphatase 1γ (PP1γ) to regulate cellular tolerance to DNA damage. Multiple bio-informatic algorithms predict that miR-34a targets the PP1CCC gene encoding PP1γ protein. Ionising radiation (IR) decreases cellular expression of PP1γ in a dose-dependent manner. An miR-34a-mimic reduces cellular PP1γ protein. Conversely, an miR-34a inhibitor antagonizes IR-induced decreases in PP1γ protein expression. A wild-type (but not mutant) miR-34a seed match sequence from the 3′ untranslated region (UTR) of PP1CCC when transplanted to a luciferase reporter gene makes it responsive to an miR-34a-mimic. Thus, miR-34a upregulation during the DDR targets the 3′ UTR of PP1CCC to decrease PP1γ protein expression. PP1γ is known to antagonize DDR signaling via the ataxia-telangiectasia-mutated (ATM) kinase. Interestingly, we find that cells exposed to DNA damage become more sensitive – in an miR-34a-dependent manner – to a second challenge with damage. Increased sensitivity to the second challenge is marked by enhanced phosphorylation of ATM and p53, increased γH2AX formation, and increased cell death. Increased sensitivity can be partly recapitulated by a miR-34a-mimic, or antagonized by an miR-34a-inhibitor. Thus, our findings suggest a model in which damage-induced miR-34a induction reduces PP1γ expression and enhances ATM signaling to decrease tolerance to repeated genotoxic challenges. This mechanism has implications for tumor suppression and the response of cancers to therapeutic radiation.  相似文献   

7.
8.
Increased concentrations of extracellular solutes affect cell function and fate by stimulating cellular responses, such as evoking MAPK cascades, altering cell cycle progression, and causing apoptosis. Our study results here demonstrate that hyperosmotic stress induced H2AX phosphorylation (γH2AX) by an unrevealed kinase cascade involving polo-like kinase 3 (Plk3) in human corneal epithelial (HCE) cells. We found that hyperosmotic stress induced DNA-double strand breaks and increased γH2AX in HCE cells. Phosphorylation of H2AX at serine 139 was catalyzed by hyperosmotic stress-induced activation of Plk3. Plk3 directly interacted with H2AX and was colocalized with γH2AX in the nuclei of hyperosmotic stress-induced cells. Suppression of Plk3 activity by overexpression of a kinase-silencing mutant or by knocking down Plk3 mRNA effectively reduced γH2AX in hyperosmotic stress-induced cells. This was consistent with results that show γH2AX was markedly suppressed in the Plk3−/− knock-out mouse corneal epithelial layer in response to hyperosmotic stimulation. The effect of hyperosmotic stress-activated Plk3 and increased γH2AX in cell cycle progression showed an accumulation of G2/M phase, altered population in G1 and S phases, and increased apoptosis. Our results for the first time reveal that hyperosmotic stress-activated Plk3 elicited γH2AX. This Plk3-mediated activation of γH2AX subsequently regulates the cell cycle progression and cell fate.  相似文献   

9.
Phosphorylation of histone H2AX on Ser 139 (γH2AX) is one of the earliest events in the response to DNA double-strand breaks; however, the subsequent removal of γH2AX from chromatin is less understood, despite being a process tightly coordinated with DNA repair. Previous studies in yeast have identified the Pph3 phosphatase (the PP4C orthologue) as important for the dephosphorylation of γH2AX. By contrast, work in human cells attributed this activity to PP2A. Here, we report that PP4 contributes to the dephosphorylation of γH2AX, both at the sites of DNA damage and in undamaged chromatin in human cells, independently of a role in DNA repair. Furthermore, depletion of PP4C results in a prolonged checkpoint arrest, most likely owing to the persistence of mediator of DNA damage checkpoint 1 (MDC1) at the sites of DNA lesions. Taken together, these results indicate that PP4 is an evolutionarily conserved γH2AX phosphatase.  相似文献   

10.
To investigate the potency of the topoisomerase II (topo II) poisons doxorubicin and etoposide to stimulate the DNA damage response (DDR), S139 phosphorylation of histone H2AX (γH2AX) was analyzed using rat cardiomyoblast cells (H9c2). Etoposide caused a dose-dependent increase in the γH2AX level as shown by Western blotting. By contrast, the doxorubicin response was bell-shaped with high doses failing to increase H2AX phosphorylation. Identical results were obtained by immunohistochemical analysis of γH2AX focus formation, comet assay-based DNA strand break analysis, and measuring the formation of the topo II-DNA cleavable complex. At low dose, doxorubicin activated ataxia telangiectasia mutated (ATM) but not ATM and Rad3-related (ATR). Both the lipid-lowering drug lovastatin and the Rac1-specific inhibitor NSC23766 attenuated doxorubicin- and etoposide-stimulated H2AX phosphorylation, induction of DNA strand breaks, and topo II-DNA complex formation. Lovastatin and NSC23766 acted in an additive manner. They did not attenuate doxorubicin-induced increase in p-ATM and p-Chk2 levels. DDR stimulated by topo II poisons was partially blocked by inhibition of type I p21-associated kinases. DDR evoked by the topoisomerase I poison topotecan remained unaffected by lovastatin. The data show that the mechanisms involved in DDR stimulated by topo II poisons are agent-specific with anthracyclines lacking DDR-stimulating activity at high doses. Pharmacological inhibition of Rac1 signaling counteracts doxorubicin- and etoposide-stimulated DDR by disabling the formation of the topo II-DNA cleavable complex. Based on the data we suggest that Rac1-regulated mechanisms are required for DNA damage induction and subsequent activation of the DDR following treatment with topo II but not topo I poisons.  相似文献   

11.
In this study, the effects of cytokines on the activation of the DNA double strand break repair factors histone H2AX (H2AX) and ataxia telangiectasia mutated (ATM) were examined in pancreatic β cells. We show that cytokines stimulate H2AX phosphorylation (γH2AX formation) in rat islets and insulinoma cells in a nitric oxide- and ATM-dependent manner. In contrast to the well documented role of ATM in DNA repair, ATM does not appear to participate in the repair of nitric oxide-induced DNA damage. Instead, nitric oxide-induced γH2AX formation correlates temporally with the onset of irreversible DNA damage and the induction of apoptosis. Furthermore, inhibition of ATM attenuates cytokine-induced caspase activation. These findings show that the formation of DNA double strand breaks correlates with ATM activation, irreversible DNA damage, and ATM-dependent induction of apoptosis in cytokine-treated β cells.  相似文献   

12.
TRAIL is an endogenous death receptor ligand also used therapeutically because of its selective proapoptotic activity in cancer cells. In the present study, we examined chromatin alterations induced by TRAIL and show that TRAIL induces a rapid activation of DNA damage response (DDR) pathways with histone H2AX, Chk2, ATM, and DNA-PK phosphorylations. Within 1 h of TRAIL exposure, immunofluorescence confocal microscopy revealed γ-H2AX peripheral nuclear staining (γ-H2AX ring) colocalizing with phosphorylated/activated Chk2, ATM, and DNA-PK inside heterochromatin regions. The marginal distribution of DDR proteins in early apoptotic cells is remarkably different from the focal staining seen after DNA damage. TRAIL-induced DDR was suppressed upon caspase inhibition or Bax inactivation, demonstrating that the DDR activated by TRAIL is downstream from the mitochondrial death pathway. H2AX phosphorylation was dependent on DNA-PK, while Chk2 phosphorylation was dependent on both ATM and DNA-PK. Downregulation of Chk2 decreased TRAIL-induced cell detachment; delayed the activation of caspases 2, 3, 8, and 9; and reduced TRAIL-induced cell killing. Together, our findings suggest that nuclear activation of Chk2 by TRAIL acts as a positive feedback loop involving the mitochondrion-dependent activation of caspases, independently of p53.  相似文献   

13.
DNA damage evokes a complex and highly coordinated DNA damage response (DDR) that is integral to the suppression of genomic instability. Double-strand breaks (DSBs) are considered the most deleterious form damage. Evidence suggests that trimethylation of histone H3 lysine 9 (H3K9me3) presents a barrier to DSB repair. Also, global levels of histone methylation are clinically predictive for several tumor types. Therefore, demethylation of H3K9 may be an important step in the repair of DSBs. The KDM4 subfamily of demethylases removes H3K9 tri- and dimethylation and contributes to the regulation of cellular differentiation and proliferation; mutation or aberrant expression of KDM4 proteins has been identified in several human tumors. We hypothesize that members of the KDM4 subfamily may be components of the DDR. We found that Kdm4b-enhanced GFP (EGFP) and KDM4D-EGFP were recruited rapidly to DNA damage induced by laser micro-irradiation. Focusing on the clinically relevant Kdm4b, we found that recruitment was dependent on poly(ADP-ribose) polymerase 1 activity as well as Kdm4b demethylase activity. The Kdm4 proteins did not measurably accumulate at γ-irradiation-induced γH2AX foci. Nevertheless, increased levels of Kdm4b were associated with decreased numbers of γH2AX foci 6 h after irradiation as well as increased cell survival. Finally, we found that levels of H3K9me2 and H3K9me3 were decreased at early time points after 2 gray of γ-irradiation. Taken together, these data demonstrate that Kdm4b is a DDR protein and that overexpression of Kdm4b may contribute to the failure of anti-cancer therapy that relies on the induction of DNA damage.  相似文献   

14.
Barrett esophagus is an epithelial metaplasia that predisposes to adenocarcinoma. Better markers of cancer risk are urgently needed to identify those patients who are likely to benefit most from emerging methods of endoscopic ablation. Disease progression is associated with genomic DNA changes (segmental gains, losses, or loss of heterozygosity). Although these changes are not easily assayed directly, we hypothesized that the underlying DNA damage should activate a DNA damage response (DDR), detectable by immunohistochemical (IHC) assays of checkpoint proteins and the resulting replicative phase cell cycle delays. Surgical specimens and endoscopic biopsies (N = 28) were subjected to IHC for the cell cycle markers cyclin A and phosphorylated histone H3 (P-H3), the DDR markers γH2AX and phosphorylated ATM/ATR substrates (P-ATM/ATRsub), and the DNA damage-responsive tumor suppressors p16 and p53. Correlations were made with histologic diagnoses. The fractions of cells that stained for cyclin A, P-H3, and γH2AX increased in parallel in dysplastic tissue, consistent with checkpoint-mediated cell cycle delays. Foci of nuclear γH2AX and P-ATM/ATRsub were demonstrated by standard and confocal immunofluorescence. Staining for p16 was more prevalent in early-stage disease with lower staining for γH2AX and P-H3. Staining for p53 was moderately increased in some early-stage disease and strongly increased in some advanced disease, consistent with checkpoint-mediated induction and mutational inactivation of p53, respectively. We suggest that IHC for DDR-associated markers may help stratify risk of disease progression in Barrett.  相似文献   

15.
In normal melanocytes, TGF-β signaling has a cytostatic effect. However, in primary melanoma cells, TGF-β-induced cytostasis is diminished, thus allowing melanoma growth. Later, a second phase of TGF-β signaling supports melanoma EMT-like changes, invasion and metastasis. In parallel with these “present-absent-present” TGF-β signaling phases, cell surface protein EWI motif-containing protein 2 (EWI-2 or IgSF8) is “absent-present-absent” in melanocytes, primary melanoma, and metastatic melanoma, respectively, suggesting that EWI-2 may serve as a negative regulator of TGF-β signaling. Using melanoma cell lines and melanoma short-term cultures, we performed RNAi and overexpression experiments and found that EWI-2 negatively regulates TGF-β signaling and its downstream events including cytostasis (in vitro and in vivo), EMT-like changes, cell migration, CD271-dependent invasion, and lung metastasis (in vivo). When EWI-2 is present, it associates with cell surface tetraspanin proteins CD9 and CD81 — molecules not previously linked to TGF-β signaling. Indeed, when associated with EWI-2, CD9 and CD81 are sequestered and have no impact on TβR2-TβR1 association or TGF-β signaling. However, when EWI-2 is knocked down, CD9 and CD81 become available to provide critical support for TβR2-TβR1 association, thus markedly elevating TGF-β signaling. Consequently, all of those TGF-β-dependent functions specifically arising due to EWI-2 depletion are reversed by blocking or depleting cell surface tetraspanin proteins CD9 or CD81. These results provide new insights into regulation of TGF-β signaling in melanoma, uncover new roles for tetraspanins CD9 and CD81, and strongly suggest that EWI-2 could serve as a favorable prognosis indicator for melanoma patients.  相似文献   

16.
Unlike other Rho GTPases, RhoB is rapidly induced by DNA damage, and its expression level decreases during cancer progression. Because inefficient repair of DNA double-strand breaks (DSBs) can lead to cancer, we investigated whether camptothecin, an anticancer drug that produces DSBs, induces RhoB expression and examined its role in the camptothecin-induced DNA damage response. We show that in camptothecin-treated cells, DSBs induce RhoB expression by a mechanism that depends notably on Chk2 and its substrate HuR, which binds to RhoB mRNA and protects it against degradation. RhoB-deficient cells fail to dephosphorylate γH2AX following camptothecin removal and show reduced efficiency of DSB repair by homologous recombination. These cells also show decreased activity of protein phosphatase 2A (PP2A), a phosphatase for γH2AX and other DNA damage and repair proteins. Thus, we propose that DSBs activate a Chk2-HuR-RhoB pathway that promotes PP2A-mediated dephosphorylation of γH2AX and DSB repair. Finally, we show that RhoB-deficient cells accumulate endogenous γH2AX and chromosomal abnormalities, suggesting that RhoB loss increases DSB-mediated genomic instability and tumor progression.  相似文献   

17.
18.

Background

Although IARC clarifies radiofrequency electromagnetic fields (RF-EMF) as possible human carcinogen, the debate on its health impact continues due to the inconsistent results. Genotoxic effect has been considered as a golden standard to determine if an environmental factor is a carcinogen, but the currently available data for RF-EMF remain controversial. As an environmental stimulus, the effect of RF-EMF on cellular DNA may be subtle. Therefore, more sensitive method and systematic research strategy are warranted to evaluate its genotoxicity.

Objectives

To determine whether RF-EMF does induce DNA damage and if the effect is cell-type dependent by adopting a more sensitive method γH2AX foci formation; and to investigate the biological consequences if RF-EMF does increase γH2AX foci formation.

Methods

Six different types of cells were intermittently exposed to GSM 1800 MHz RF-EMF at a specific absorption rate of 3.0 W/kg for 1 h or 24 h, then subjected to immunostaining with anti-γH2AX antibody. The biological consequences in γH2AX-elevated cell type were further explored with comet and TUNEL assays, flow cytometry, and cell growth assay.

Results

Exposure to RF-EMF for 24 h significantly induced γH2AX foci formation in Chinese hamster lung cells and Human skin fibroblasts (HSFs), but not the other cells. However, RF-EMF-elevated γH2AX foci formation in HSF cells did not result in detectable DNA fragmentation, sustainable cell cycle arrest, cell proliferation or viability change. RF-EMF exposure slightly but not significantly increased the cellular ROS level.

Conclusions

RF-EMF induces DNA damage in a cell type-dependent manner, but the elevated γH2AX foci formation in HSF cells does not result in significant cellular dysfunctions.  相似文献   

19.
RNA-binding proteins (RBPs) are emerging as important effectors of the cellular DNA damage response (DDR). The RBP FUS is implicated in RNA metabolism and DNA repair, and it undergoes reversible liquid–liquid phase separation (LLPS) in vitro. Here, we demonstrate that FUS-dependent LLPS is necessary for the initiation of the DDR. Using laser microirradiation in FUS-knockout cells, we show that FUS is required for the recruitment to DNA damage sites of the DDR factors KU80, NBS1, and 53BP1 and of SFPQ, another RBP implicated in the DDR. The relocation of KU80, NBS1, and SFPQ is similarly impaired by LLPS inhibitors, or LLPS-deficient FUS variants. We also show that LLPS is necessary for efficient γH2AX foci formation. Finally, using superresolution structured illumination microscopy, we demonstrate that the absence of FUS impairs the proper arrangement of γH2AX nanofoci into higher-order clusters. These findings demonstrate the early requirement for FUS-dependent LLPS in the activation of the DDR and the proper assembly of DSB repair complexes.  相似文献   

20.

Aim

In this study, we investigated γH2AX foci as markers of DSBs in normal brain and brain tumor tissue in mouse after BNCT.

Background

Boron neutron capture therapy (BNCT) is a particle radiation therapy in combination of thermal neutron irradiation and boron compound that specifically accumulates in the tumor. 10B captures neutrons and produces an alpha (4He) particle and a recoiled lithium nucleus (7Li). These particles have the characteristics of extremely high linear energy transfer (LET) radiation and therefore have marked biological effects. High LET radiation causes severe DNA damage, DNA DSBs. As the high LET radiation induces complex DNA double strand breaks (DSBs), large proportions of DSBs are considered to remain unrepaired in comparison with exposure to sparsely ionizing radiation.

Materials and methods

We analyzed the number of γH2AX foci by immunohistochemistry 30 min or 24 h after neutron irradiation.

Results

In both normal brain and brain tumor, γH2AX foci induced by 10B(n,α)7Li reaction remained 24 h after neutron beam irradiation. In contrast, γH2AX foci produced by γ-ray irradiation at contaminated dose in BNCT disappeared 24 h after irradiation in these tissues.

Conclusion

DSBs produced by 10B(n,α)7Li reaction are supposed to be too complex to repair for cells in normal brain and brain tumor tissue within 24 h. These DSBs would be more difficult to repair than those by γ-ray. Excellent anti-tumor effect of BNCT may result from these unrepaired DSBs induced by 10B(n,α)7Li reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号