共查询到20条相似文献,搜索用时 0 毫秒
1.
Until recently, the only archaeon for which a bona fide origin of replication was reported was Pyrococcus abyssi, where a single origin was identified. Although several in silico analyses have suggested that some archaeal species might contain more than one origin, this has only been demonstrated recently. Two studies have shown that multiple origins of replication function in two archaeal species. One study identified two origins of replication in the archaeon Sulfolobus solfataricus, whereas a second study used a different technique to show that both S. solfataricus and Sulfolobus acidocaldarius have three functional origins. These are the first reports of archaea having multiple origins. This finding has implications for research on the mechanisms of DNA replication and evolution. 相似文献
2.
Michel Hochuli Heiko Patzelt Dieter Oesterhelt Kurt Wüthrich Thomas Szyperski 《Journal of bacteriology》1999,181(10):3226-3237
Biosynthesis of proteinogenic amino acids in the extremely halophilic archaeon Haloarcula hispanica was explored by using biosynthetically directed fractional 13C labeling with a mixture of 90% unlabeled and 10% uniformly 13C-labeled glycerol. The resulting 13C-labeling patterns in the amino acids were analyzed by two-dimensional 13C,1H correlation spectroscopy. The experimental data provided evidence for a split pathway for isoleucine biosynthesis, with 56% of the total Ile originating from threonine and pyruvate via the threonine pathway and 44% originating from pyruvate and acetyl coenzyme A via the pyruvate pathway. In addition, the diaminopimelate pathway involving diaminopimelate dehydrogenase was shown to lead to lysine biosynthesis and an analysis of the 13C-labeling pattern in tyrosine indicated novel biosynthetic pathways that have so far not been further characterized. For the 17 other proteinogenic amino acids, the data were consistent with data for commonly found biosynthetic pathways. A comparison of our data with the amino acid metabolisms of eucarya and bacteria supports the theory that pathways for synthesis of proteinogenic amino acids were established before ancient cells diverged into archaea, bacteria, and eucarya. 相似文献
3.
The genomic sequence of the halophilic archaeon Halobacterium NRC-1 has been analyzed by the Z curve method. The Z curve is a three-dimensional curve that uniquely represents a given DNA sequence. Based on the known behaviors of the Z curves for the archaea whose replication origins have been identified, the analysis of the Z curve for the genome of Halobacterium NRC-1 strongly suggests that the large genome has two replication origins, oriC1 (921,863-922,014) and oriC2 (1,806,444-1,807,229), which are located at two sharp peaks of the Z curve. These two regions are next to the cdc6 genes and contain multiple copies of stretches of G and C, i.e., ggggtgggg and ccccacccc, which may also be regarded as direct and inverted repeats. Based on the above analysis, a model of replication of Halobacterium NRC-1 with two replication origins and two termini has been proposed. The experimental confirmation of this model would constitute the first example of multiple replication origins of archaea, which will finally provide much insight into the understanding of replication mechanisms of eukaryotic organisms, including human. In addition, the potential multiple replication origins of the archaeon Sulfolobus solfataricus are suggested by the analysis based on the Z curve method. 相似文献
4.
DNA replication is a fragile process, since unavoidable lesions in the template DNA cause replicative polymerases to stall, posing a serious threat to genome integrity. Homologous recombination, translesion DNA synthesis and de novo reinitiation of DNA synthesis ensure robust replication by navigating it passed damaged DNA. In this review, we highlight the relationship between these three processes. 相似文献
5.
6.
DNA replication forks pause in front of lesions on the template, eventually leading to cytotoxic chromosomal rearrangements. The in vivo structure of damaged eukaryotic replication intermediates has been so far elusive. Combining electron microscopy (EM) and two-dimensional (2D) gel electrophoresis, we found that UV-irradiated S. cerevisiae cells uncouple leading and lagging strand replication at irreparable UV lesions, thus generating long ssDNA regions on one side of the fork. Furthermore, small ssDNA gaps accumulate along replicated duplexes, likely resulting from repriming events downstream of the lesions on both leading and lagging strands. Translesion synthesis and homologous recombination counteract gap accumulation, without affecting fork progression. The DNA damage checkpoint contributes to gap repair and maintains a replication-competent fork structure. We propose that the coordinated action of checkpoint, recombination, and translesion synthesis-mediated processes at the fork and behind the fork preserves the integrity of replicating chromosomes by allowing efficient replication restart and filling the resulting ssDNA gaps. 相似文献
7.
Evidence for multiple vegetative DNA replication origins and alternative replication mechanisms of bovine papillomavirus type 1 总被引:6,自引:0,他引:6
By following up the chance detection in the electron microscope of a DNA replication intermediate within a preparation of bovine papillomavirus (BPV-1) DNA isolated from purified virus particles, information was obtained about the mechanism of BPV-1 genome replication during the final stages of virus multiplication in naturally infected bovine wart tissue. The structure of viral replication intermediates was investigated by electron microscopic analysis of viral DNA linearized by digestion with restriction endonucleases which cleave the circular BPV-1 chromosome at defined sites. Both Cairns and rolling circle-type molecules were identified. Furthermore, replication eyes were widely distributed within the viral genome, indicating that vegetative BPV-1 DNA replication origins are largely uncoupled from previously described plasmid maintenance sequence elements. 相似文献
8.
This study shows that beech leaves adapt to their light environment by inducing dramatic changes to antioxidant systems and
pigment composition. Thus, ascorbate, tocopherol, glutathione, β-carotene and xanthophyll cycle pigments are much more concentrated
in sun leaves, while α-carotene is much less concentrated than in shade leaves. These characteristics were used to identify
the inherent potential of beech cotyledons from three contrasting climatic origins to tolerate light stress. The antioxidant
content was initially different in the three provenances tested, but these initial differences tended to reduce with leaf
ageing. The higher antioxidant and de-epoxidized xanthophyll content found in developing cotyledons indicated a superior potential
for tolerance to photo-oxidative damage in those plants collected from the stressful climate of the Pyrenees. Nevertheless
under an experimental high irradiation treatment no differences in light stress tolerance were observed between provenances.
Received: 31 May 1999 / Accepted: 16 November 1999 相似文献
9.
10.
Background
Cyanobacteria are recognized as the primordial organisms to grace the earth with molecular oxygen ~3.5 billion years ago as a result of their oxygenic photosynthesis. This laid a selection pressure for the evolution of antioxidative defense mechanisms to alleviate the toxic effect of active oxygen species (AOS) in cyanobacteria. Superoxide dismutases (SODs) are metalloenzymes that are the first arsenal in defense mechanism against oxidative stress followed by an array of antioxidative system. Unlike other living organisms, cyanobacteria possess multiple isoforms of SOD. Hence, an attempt was made to demonstrate the oxidative stress tolerance ability of marine cyanobacterium, Leptolyngbya valderiana BDU 20041 and to PCR amplify and sequence the SOD gene, the central enzyme for alleviating stress.Result
L. valderiana BDU 20041, a filamentous, non-heterocystous marine cyanobacterium showed tolerance to the tested dye (C.I. Acid Black 1) which is evident by increased in biomass (i.e.) chlorophyll a. The other noticeable change was the total ROS production by culture dosed with dye compared to the control cultures. This prolonged incubation showed sustenance, implying that cyanobacteria maintain their antioxidant levels. The third significant feature was a two-fold increase in SOD activity of dye treated L. valderiana BDU20041 suggesting the role of SOD in alleviating oxidative stress via Asada-Halliwell pathway. Hence, the organism was PCR amplified for SOD gene resulting in an amplicon of 550 bp. The sequence analysis illustrated the presence of first three residues involved in motif; active site residues at H4, 58 and D141 along with highly conserved Mn specific residues. The isolated gene shared 63.8% homology with MnSOD of bacteria confirmed it as Mn isoform. This is the hitherto report on SOD gene from marine cyanobacterium, L. valderiana BDU20041 of Indian subcontinent.Conclusion
Generation of Reactive Oxygen Species (ROS) coupled with induction of SOD by marine cyanobacterium, L. valderiana BDU20041 was responsible for alleviating stress caused by an azo dye, C. I. Acid Black 1. The partial SOD gene has been sequenced and based on the active site, motif and metal specific residues; it has been identified as Mn metalloform. 相似文献11.
Schirtzinger EE Tavares ES Gonzales LA Eberhard JR Miyaki CY Sanchez JJ Hernandez A Müeller H Graves GR Fleischer RC Wright TF 《Molecular phylogenetics and evolution》2012,64(2):342-356
Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. 相似文献
12.
Phosphoesterase domains associated with DNA polymerases of diverse origins. 总被引:10,自引:3,他引:10
下载免费PDF全文

Computer analysis of DNA polymerase protein sequences revealed previously unidentified conserved domains that belong to two distinct superfamilies of phosphoesterases. The alpha subunits of bacterial DNA polymerase III and two distinct family X DNA polymerases are shown to contain an N-terminal domain that defines a novel enzymatic superfamily, designated PHP, after polymerase and histidinol phosphatase. The predicted catalytic site of the PHP superfamily consists of four motifs containing conserved histidine residues that are likely to be involved in metal-dependent catalysis of phosphoester bond hydrolysis. The PHP domain is highly conserved in all bacterial polymerase III alpha subunits, but in proteobacteria and mycoplasmas, the conserved motifs are distorted, suggesting a loss of the enzymatic activity. Another conserved domain, found in the small subunits of archaeal DNA polymerase II and eukaryotic DNA polymerases alpha and delta, is shown to belong to the superfamily of calcineurin-like phospho-esterases, which unites a variety of phosphatases and nucleases. The conserved motifs required for phospho-esterase activity are intact in the archaeal DNA polymerase subunits, but are disrupted in their eukaryotic orthologs. A hypothesis is proposed that bacterial and archaeal replicative DNA polymerases possess intrinsic phosphatase activity that hydrolyzes the pyrophosphate released during nucleotide polymerization. As proposed previously, pyrophosphate hydrolysis may be necessary to drive the polymerization reaction forward. The phosphoesterase domains with disrupted catalytic motifs may assume an allosteric, regulatory function and/or bind other subunits of DNA polymerase holoenzymes. In these cases, the pyrophosphate may be hydrolyzed by a stand-alone phosphatase, and candidates for such a role were identified among bacterial PHP superfamily members. 相似文献
13.
Jing Han Qiuhe Lu Ligang Zhou Hailong Liu Hua Xiang 《Applied and environmental microbiology》2009,75(19):6168-6175
Genome-wide analysis has revealed abundant FabG (β-ketoacyl-ACP reductase) paralogs, with uncharacterized biological functions, in several halophilic archaea. In this study, we identified for the first time that the fabG1 gene, but not the other five fabG paralogs, encodes the polyhydroxyalkanoate (PHA)-specific acetoacetyl coenzyme A (acetoacetyl-CoA) reductase in Haloarcula hispanica. Although all of the paralogous fabG genes were actively transcribed, only disruption or knockout of fabG1 abolished PHA synthesis, and complementation of the ΔfabG1 mutant with the fabG1 gene restored both PHA synthesis capability and the NADPH-dependent acetoacetyl-CoA reductase activity. In addition, heterologous coexpression of the PHA synthase genes (phaEC) together with fabG1, but not its five paralogs, reconstructed the PHA biosynthetic pathway in Haloferax volcanii, a PHA-defective haloarchaeon. Taken together, our results indicate that FabG1 in H. hispanica, and possibly its counterpart in Haloarcula marismortui, has evolved the distinct function of supplying precursors for PHA biosynthesis, like PhaB in bacteria. Hence, we suggest the renaming of FabG1 in both genomes as PhaB, the PHA-specific acetoacetyl-CoA reductase of halophilic archaea.Several haloarchaeal species belonging to the genera Haloferax, Haloarcula, Natrialba, and Haloquadratum are capable of synthesizing short-chain-length polyhydroxyalkanoates (SCL-PHAs) (6, 8, 14, 16), a large family of biopolymers with desirable biodegradability, biocompatibility, and thermoplastic features (31). Although the metabolic pathways of PHAs in bacteria have been characterized in detail (10, 15, 20, 25, 26, 37), the genes involved in PHA biosynthesis in haloarchaea were not recognized until recently, when the PHA synthase genes were identified and characterized for Haloarcula marismortui, Haloarcula hispanica, and Haloferax mediterranei (6, 19). These archaeal PHA synthases are all composed of two subunits, PhaE and PhaC. They are homologous to the class III PHA synthases from bacteria but have a longer C-terminal extension in the PhaC subunit. Nevertheless, the pathway of supplying the PHA precursors has not yet been clarified for any haloarchaeal strain.Both H. mediterranei and H. hispanica are able to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from unrelated carbon sources, despite the content of the (R)-3-hydroxyvalerate (3-HV) monomer of PHBV in H. mediterranei (10 to 13 mol%) (4, 19) being much higher than that in H. hispanica (∼3 mol%) (19). Conversely, the bacteria Ralstonia eutropha and Synechocystis sp. strain PCC6803, which possess class I and III PHA synthases, respectively, accumulate just poly(3-hydroxybutyrate) (PHB) when the 3-HV-related carbon sources (i.e., propionate and valerate) are not supplied (30). In these two bacteria, the biosynthesis of the (R)-3-hydroxybutyrate coenzyme A [(R)-3-HB-CoA] precursor is conducted by two steps. First, two acetyl-CoA molecules are condensed into one acetoacetyl-CoA molecule by the enzyme β-ketothiolase (PhaA). The acetoacetyl-CoA is then reduced to (R)-3-HB-CoA by a PHA-specific acetoacetyl-CoA reductase (PhaB). The resulting (R)-3-HB-CoA is subsequently incorporated into PHB, catalyzed by PHA synthases (26, 36).Both PhaB and FabG belong to the short-chain dehydrogenase/reductase (SDR) superfamily, whose members are homologous in sequence and have several conserved motifs (27, 29). Interestingly, although FabGs naturally reduce 3-ketoacyl-ACP to form (R)-3-hydroxyacyl-ACP in fatty acid biosynthesis, a few FabGs also recognize 3-ketoacyl-CoA and hence function in PHA biosynthesis. For example, the FabG proteins of Escherichia coli and Pseudomonas aeruginosa have been demonstrated to supply precursors for PHA biosynthesis in recombinant E. coli cells (21, 22, 32, 35). In addition, several FabG paralogs may have evolved a distinct function, to be responsible only for PHA accumulation. This situation was observed in Synechocystis sp. strain PCC6803, where the originally annotated FabG (12) was renamed PhaB after an understanding of its function in PHA biosynthesis (36).Genome-wide analysis of H. marismortui ATCC 43049 (1) revealed eight FabG paralogs in this haloarchaeon. Similarly, multiple fabG paralog genes (fabG1 to fabG6) were also observed in the newly sequenced genome of H. hispanica (our unpublished data). In this study, we demonstrate that fabG1, but not the other five fabG paralogs, encodes the PHA-specific acetoacetyl-CoA reductase in H. hispanica. It is responsible for providing (R)-3-HB-CoA for PHA biosynthesis in Haloarcula species, and interestingly, this enzyme also functions well in Haloferax volcanii, endowing this PHA-defective strain with the ability to accumulate PHA when cotransformed with PHA synthase genes. 相似文献
14.
The availability of hundreds of complete bacterial genomes has created new challenges and simultaneously opportunities for bioinformatics. In the area of statistical analysis of genomic sequences, the studies of nucleotide compositional bias and gene bias between strands and replichores paved way to the development of tools for prediction of bacterial replication origins. Only a few (about 20) origin regions for eubacteria and archaea have been proven experimentally. One reason for that may be that this is now considered as an essentially bioinformatics problem, where predictions are sufficiently reliable not to run labor-intensive experiments, unless specifically needed. Here we describe the main existing approaches to the identification of replication origin (oriC) and termination (terC) loci in prokaryotic chromosomes and characterize a number of computational tools based on various skew types and other types of evidence. We also classify the eubacterial and archaeal chromosomes by predictability of their replication origins using skew plots. Finally, we discuss possible combined approaches to the identification of the oriC sites that may be used to improve the prediction tools, in particular, the analysis of DnaA binding sites using the comparative genomic methods. 相似文献
15.
Mapping replication origins in yeast chromosomes. 总被引:8,自引:0,他引:8
B J Brewer W L Fangman 《BioEssays : news and reviews in molecular, cellular and developmental biology》1991,13(7):317-322
The replicon hypothesis, first proposed in 1963 by Jacob and Brenner, states that DNA replication is controlled at sites called origins. Replication origins have been well studied in prokaryotes. However, the study of eukaryotic chromosomal origins has lagged behind, because until recently there has been no method for reliably determining the identity and location of origins from eukaryotic chromosomes. Here, we review a technique we developed with the yeast Saccharomyces cerevisiae that allows both the mapping of replication origins and an assessment of their activity. Two-dimensional agarose gel electrophoresis and Southern hybridization with total genomic DNA are used to determine whether a particular restriction fragment acquires the branched structure diagnostic of replication initiation. The technique has been used to localize origins in yeast chromosomes and assess their initiation efficiency. In some cases, origin activation is dependent upon the surrounding context. The technique is also being applied to a variety of eukaryotic organisms. 相似文献
16.
Johnson KP Yoshizawa K Smith VS 《Proceedings. Biological sciences / The Royal Society》2004,271(1550):1771-1776
A major fraction of the diversity of insects is parasitic, as herbivores, parasitoids or vertebrate ectopara sites. Understanding this diversity requires information on the origin of parasitism in various insect groups. Parasitic lice (Phthiraptera) are the only major group of insects in which all members are permanent parasites of birds or mammals. Lice are classified into a single order but are thought to be closely related to, or derived from, book lice and bark lice (Psocoptera). Here, we use sequences of the nuclear 18S rDNA gene to investigate the relationships among Phthiraptera and Psocoptera and to identify the origins of parasitism in this group (termed Psocodea). Maximum-likelihood (ML), Bayesian ML and parsimony analyses of these data indicate that lice are embedded within the psocopteran infraorder Nanopsocetae, making the order Psocoptera paraphyletic (i.e. does not contain all descendants of a single common ancestor). Furthermore, one family of Psocoptera, Liposcelididae, is identified as the sister taxon to the louse suborder Amblycera, making parasitic lice (Phthiraptera) a polyphyletic order (i.e. descended from two separate ancestors). We infer from these results that parasitism of vertebrates arose twice independently within Psocodea, once in the common ancestor of Amblycera and once in the common ancestor of all other parasitic lice. 相似文献
17.
R C Eisensmith Y Okano M Dasovich T Wang F Güttler H Lou P Guldberg U Lichter-Konecki D S Konecki E Svensson 《American journal of human genetics》1992,51(6):1355-1365
Phenylketonuria (PKU), a disorder of amino acid metabolism prevalent among Caucasians and other ethnic groups, is caused primarily by a deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH). PKU is a highly heterogeneous disorder, with more than 60 molecular lesions identified in the PAH gene. The haplotype associations, relative frequencies, and distributions of five prevalent PAH mutations (R158Q, R261Q, IVS10nt546, R408W, and IVS12n1) were established in a comprehensive European sample population and subsequently were examined to determine the potential roles of several genetic mechanisms in explaining the present distribution of the major PKU alleles. Each of these five mutations was strongly associated with only one of the more than 70 chromosomal haplotypes defined by eight RFLPs in or near the PAH gene. These findings suggest that each of these mutations arose through a single founding event that occurred within time periods ranging from several hundred to several thousand years ago. From the significant differences observed in the relative frequencies and distributions of these five alleles throughout Europe, four of these putative founding events could be localized to specific ethnic subgroups. Together, these data suggest that there were multiple, geographically and ethnically distinct origins for PKU within the European population. 相似文献
18.
Multiple origins of replication in the dihydrofolate reductase amplicons of a methotrexate-resistant chinese hamster cell line. 总被引:3,自引:6,他引:3
下载免费PDF全文

We recently showed that replication initiates in the early S period at two closely spaced zones in the 240-kilobase (kb) dihydrofolate reductase (DHFR) amplicon of the methotrexate-resistant Chinese hamster ovary cell line CHOC 400. Both of these initiation loci (ori-beta and ori-gamma) have previously been cloned in a recombinant cosmid. In this study, we identified a third early-firing initiation locus (ori-alpha) in the much larger DHFR amplicon of the independently isolated methotrexate-resistant Chinese hamster cell line DC3F-A3/4K (A3/4K). We describe the molecular cloning of this newly identified locus and demonstrate by chromosomal walking that ori-alpha lies approximately 240 kb upstream from ori-beta. Using overlapping cosmid clones for more than 450 kb of DNA sequence from this region of the DHFR domain, we have monitored the replication pattern of the amplicons in synchronized A3/4K cells. These studies suggest that ori-alpha, ori-beta, and ori-gamma are the only early-firing initiation sites in this 450-kb sequence. In addition, we have been able to roughly localize the termini between ori-alpha and ori-beta and between ori-alpha and the next origin in the 5' direction. Thus, we have now isolated the equivalent of three early-firing replicons (including their origins) from a well-characterized chromosomal domain. With these tools, it should be possible to determine those properties that are shared by the origins and termini of different replicons and which are therefore likely to be functionally significant. 相似文献
19.
The MADS-domain protein AGAMOUS-like 15 accumulates in embryonic tissues with diverse origins. 总被引:11,自引:0,他引:11
AGL15 (AGAMOUS-like 15), a member of the MADS-domain family of regulatory factors, accumulates preferentially in the organs and tissues derived from double fertilization in flowering plants (i.e. the embryo, suspensor, and endosperm). The developmental role of AGL15 is still undefined. If it is involved in embryogenesis rather than some other aspect of seed biology, then AGL15 protein should accumulate whenever development proceeds in the embryonic mode, regardless of the origin of those embryos or their developmental context. To test this, we used AGL15-specific antibodies to analyze apomictic embryogenesis in dandelion (Taraxacum officinale), microspore embryogenesis in oilseed rape (Brassica napus), and somatic embryogenesis in alfalfa (Medicago sativa). In every case, AGL15 accumulated to relatively high levels in the nuclei of the embryos. AGL15 also accumulated in cotyledon-like organs produced by the xtc2 (extra cotyledon2) mutant of Arabidopsis and during precocious germination in oilseed rape. Furthermore, the subcellular localization of AGL15 appeared to be developmentally regulated in all embryogenic situations. AGL15 was initially present in the cytoplasm of cells and became nuclear localized before or soon after embryogenic cell divisions began. These results support the hypothesis that AGL15 participates in the regulation of programs active during the early stages of embryo development. 相似文献
20.
DNA replication initiates at chromosomal positions called replication origins. This review will focus on the activity, regulation and roles of replication origins in Saccharomyces cerevisiae. All eukaryotic cells, including S. cerevisiae, depend on the initiation (activity) of hundreds of replication origins during a single cell cycle for the duplication of their genomes. However, not all origins are identical. For example, there is a temporal order to origin activation with some origins firing early during the S-phase and some origins firing later. Recent studies provide evidence that posttranslational chromatin modifications, heterochromatin-binding proteins and nucleosome positioning can control the efficiency and/or timing of chromosomal origin activity in yeast. Many more origins exist than are necessary for efficient replication. The availability of excess replication origins leaves individual origins free to evolve distinct forms of regulation and/or roles in chromosomes beyond their fundamental role in DNA synthesis. We propose that some origins have acquired roles in controlling chromatin structure and/or gene expression. These roles are not linked obligatorily to replication origin activity per se, but instead exploit multi-subunit replication proteins with the potential to form context-dependent protein-protein interactions. 相似文献