首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inner ear sensory organs possess extraordinary structural features necessary to conduct mechanosensory transduction for hearing and balance. Their structural beauty has fascinated scientists since the dawn of modern science and ensured a rigorous pursuit of the understanding of mechanotransduction. Sensory cells of the inner ear display unique structural features that underlie their mechanosensitivity and resolution, and represent perhaps the most distinctive form of a type of cellular polarity, known as planar cell polarity (PCP). Until recently, however, it was not known how the precise PCP of the inner ear sensory organs was achieved during development. Here, we review the PCP of the inner ear and recent advances in the quest for an understanding of its formation.  相似文献   

2.
The mechanosensory hair cells of the inner ear have emerged as one of the primary models for studying the development of planar polarity in vertebrates. Planar polarity is the polarized organization of cells or cellular structures in the plane of an epithelium. For hair cells, planar polarity is manifest at the subcellular level in the polarized organization of the stereociliary bundle and at the cellular level in the coordinated orientation of stereociliary bundles between adjacent cells. This latter organization is commonly called Planar Cell Polarity and has been described in the greatest detail for auditory hair cells of the cochlea. A third level of planar polarity, referred to as tissue polarity, occurs in the utricular and saccular maculae; two inner ear sensory organs that use hair cells to detect linear acceleration and gravity. In the utricle and saccule hair cells are divided between two groups that have opposite stereociliary bundle polarities and, as a result, are able to detect movements in opposite directions. Thus vestibular hair cells are a unique model system for studying planar polarity because polarization develops at three different anatomical scales in the same sensory organ. Moreover the system has the potential to be used to dissect functional interactions between molecules regulating planar polarity at each of the three levels. Here the significance of planar polarity on vestibular system function will be discussed, and the molecular mechanisms associated with development of planar polarity at each anatomical level will be reviewed. Additional aspects of planar polarity that are unique to the vestibular maculae will also be introduced.  相似文献   

3.
4.
5.
Cadherins are cell adhesion molecules that have been implicated in development of a variety of organs including the ear. In this study we analyzed expression patterns of three zebrafish cadherins (Cadherin-2, -4, and -11) in the embryonic and larval zebrafish inner ear using both in situ hybridization and immunocytochemical methods. All three Cadherins exhibit distinct spatiotemporal patterns of expression during otic vesicle morphogenesis. Cadherin-2 and Cadherin-4 proteins and their respective mRNAs were detected mainly in the sensory patches and the statoacoustic ganglion (SAg), respectively. In contrast, cadherin-11mRNA was widely expressed earlier in the otic placode, and later became restricted to a subset of cells in the inner ear, including hair cells.  相似文献   

6.
7.
The sensory epithelia of the vertebrate inner ear are comprised of a complex pattern of hair cells and supporting cells. Several different families of signaling molecules have been shown to play a role in the development and maintenance of this structure. In particular, the steroid/thyroid receptor superfamily, and specifically retinoid and thyroid receptors appear to influence the determination, differentiation, maintenance, and possibly regeneration, of the sensory epithelia of the vertebrate inner ear. Clinical and experimental evidence demonstrates that changes in the relative availability of retinoic acid and thyroid hormone, the ligands for retinoid and thyroid receptors, result in perturbations in the development of hair cell sensory epithelia. Retinoic acid and retinoid receptors appear to play a role in early developmental events including cellular proliferation and determination whereas thyroid hormone and thyroid receptors appear to play a role in later events including differentiation and maintenance.  相似文献   

8.
The inner ear is one of the most morphologically elaborate tissues in vertebrates, containing a group of mechanosensitive sensory organs that mediate hearing and balance. These organs are arranged precisely in space and contain intricately patterned sensory epithelia. Here, we review recent studies of inner ear development and patterning which reveal that multiple stages of ear development - ranging from its early induction from the embryonic ectoderm to the establishment of the three cardinal axes and the fine-grained arrangement of sensory cells - are orchestrated by gradients of signaling molecules.  相似文献   

9.
Correct patterning of the inner ear sensory epithelium is essential for the conversion of sound waves into auditory stimuli. Although much is known about the impact of the developing cytoskeleton on cellular growth and cell shape, considerably less is known about the role of cytoskeletal structures on cell surface mechanical properties. In this study, atomic force microscopy (AFM) was combined with fluorescence imaging to show that developing inner ear hair cells and supporting cells have different cell surface mechanical properties with different developmental time courses. We also explored the cytoskeletal organization of developing sensory and non-sensory cells, and used pharmacological modulation of cytoskeletal elements to show that the developmental increase of hair cell stiffness is a direct result of actin filaments, whereas the development of supporting cell surface mechanical properties depends on the extent of microtubule acetylation. Finally, this study found that the fibroblast growth factor signaling pathway is necessary for the developmental time course of cell surface mechanical properties, in part owing to the effects on microtubule structure.  相似文献   

10.
In the inner ear, Notch signaling has been proposed to specify the sensory regions, as well as regulate the differentiation of hair cells and supporting cell within those regions. In addition, Notch plays an important role in otic neurogenesis, by determining which cells differentiate as neurons, sensory cells and non-sensory cells. Here, I review the evidence for the complex and myriad roles Notch participates in during inner ear development. A particular challenge for those studying ear development and Notch is to decipher how activation of a single pathway can lead to different outcomes within the ear, which may include changes in the intrinsic properties of the cell, Notch modulation, and potential non-canonical pathways.  相似文献   

11.
The inner ear develops from a simple ectodermal thickening called the otic placode into a labyrinth of chambers which house sensory organs that sense sound and are used to maintain balance. Although the morphology and function of the sensory organs are well characterized, their origins and lineage relationships are virtually unknown. In this study, we generated a fate map of Xenopus laevis inner ear at otic placode and otocyst stages to determine the developmental origins of the sensory organs. Our lineage analysis shows that all regions of the otic placode and otocyst can give rise to the sensory organs of the inner ear, though there were differences between labeled quadrants in the range of derivatives formed. A given region often gives rise to cells in multiple sensory organs, including cells that apparently dispersed from anterior to posterior poles and vice versa. These results suggest that a single sensory organ arises from cells in different parts of the placode or otocyst and that cell mixing plays a large role in ear development. Time-lapse videomicroscopy provides further evidence that cells from opposite regions of the inner ear mix during the development of the inner ear, and this mixing begins at placode stages. Lastly, bone morphogenetic protein 4 (BMP-4), a member of the transforming growth factor beta (TGF-beta) family, is expressed in all sensory organs of the frog inner ear, as it is in the developing chicken ear. Inner ear fate maps provide a context for interpreting gene expression patterns and embryological manipulations.  相似文献   

12.
Stem cells in the nervous system have some capacity to restore damaged tissue. Proliferation of stem cells endows them with self-renewal ability and accounts for in vitro formation of neurospheres, clonally derived colonies of floating cells. However, damage to the nervous system is not readily repaired, suggesting that the stem cells do not provide an easily recruited source of cells for regeneration. The vestibular and auditory organs, despite their limited ability to replace damaged cells, appear to contain cells with stem cell properties. These inner ear stem cells, identified by neurosphere formation and by their expression of markers of inner ear progenitors, can differentiate to hair cells and neurons. Differentiated cells obtained from inner ear stem cells expressed sensory neuron markers and, after co-culture with the organ of Corti, grew processes that extended to hair cells. The neurons expressed synaptic vesicle markers at points of contact with hair cells. Exogenous stem cells have also been used for hair cell and neuron replacement. Embryonic stem cells are one potential source of both hair cells and sensory neurons. Neural progenitors made from embryonic stem cells, transplanted into the inner ear of gerbils that had been de-afferented by treatment with a toxin, differentiated into cells that expressed neuronal markers and grew processes both peripherally into the organ of Corti and centrally. The regrowth of these neurons suggests that it may be possible to replace auditory neurons that have degenerated with neurons that restore auditory function by regenerating connections to hair cells.  相似文献   

13.
Hair cell orientations of all inner ear sensory epithelia in glass eel, yellow eel and silver eel are presented. The patterns of hair cell orientation do not change with age. All sensory epithelia increase in area during growth of the eel. Examination of the hair cell population in macula utriculi show constant hair cell densities and increased hair cell population during development. Further, regional differences in hair cell densities and hair cell types are observed. The hair cells/axons ratio increases 3-fold from glass eel to silver eel stadium. Nerve stainings in silver eel reveal complex innervation patterns with large stubby fibres confined to restricted regions. Histograms of nerve fiber diameters show marked differences from glass eel to silver eel. Growth of sensory epithelia is discussed.  相似文献   

14.
Revisiting cell fate specification in the inner ear   总被引:15,自引:0,他引:15  
Generating the diversity of cell types in the inner ear may require an interplay between regional compartmentalization and local cellular interactions. Recent evidence has come from gene targeting, lineage analysis, fate mapping and gene expression studies. Notch signaling and neurogenic gene regulation are involved in patterning or specification of sensory organs, ganglion cells and hair cell mechanoreceptors.  相似文献   

15.
16.
The cochlea of the mammalian inner ear contains three rows of outer hair cells and a single row of inner hair cells. These hair cell receptors reside in the organ of Corti and function to transduce mechanical stimuli into electrical signals that mediate hearing. To date, the molecular mechanisms underlying the maintenance of these delicate sensory hair cells are unknown. We report that targeted disruption of Barhl1, a mouse homolog of the Drosophila BarH homeobox genes, results in severe to profound hearing loss, providing a unique model for the study of age-related human deafness disorders. Barhl1 is expressed in all sensory hair cells during inner ear development, 2 days after the onset of hair cell generation. Loss of Barhl1 function in mice results in age-related progressive degeneration of both outer and inner hair cells in the organ of Corti, following two reciprocal longitudinal gradients. Our data together indicate an essential role for Barhl1 in the long-term maintenance of cochlear hair cells, but not in the determination or differentiation of these cells.  相似文献   

17.
In mammals, six separate sensory regions in the inner ear are essential for hearing and balance function. Each sensory region is made up of hair cells, which are the sensory cells, and their associated supporting cells, both arising from a common progenitor. Little is known about the molecular mechanisms that govern the development of these sensory organs. Notch signaling plays a pivotal role in the differentiation of hair cells and supporting cells by mediating lateral inhibition via the ligands Delta-like 1 and Jagged (JAG) 2. However, another Notch ligand, JAG1, is expressed early in the sensory patches prior to cell differentiation, indicating that there may be an earlier role for Notch signaling in sensory development in the ear. Here, using conditional gene targeting, we show that the Jag1 gene is required for the normal development of all six sensory organs within the inner ear. Cristae are completely lacking in Jag1-conditional knockout (cko) mutant inner ears, whereas the cochlea and utricle show partial sensory development. The saccular macula is present but malformed. Using SOX2 and p27kip1 as molecular markers of the prosensory domain, we show that JAG1 is initially expressed in all the prosensory regions of the ear, but becomes down-regulated in the nascent organ of Corti by embryonic day 14.5, when the cells exit the cell cycle and differentiate. We also show that both SOX2 and p27kip1 are down-regulated in Jag1-cko inner ears. Taken together, these data demonstrate that JAG1 is expressed early in the prosensory domains of both the cochlear and vestibular regions, and is required to maintain the normal expression levels of both SOX2 and p27kip1. These data demonstrate that JAG1-mediated Notch signaling is essential during early development for establishing the prosensory regions of the inner ear.  相似文献   

18.
Aquaporin-mediated fluid regulation in the inner ear   总被引:6,自引:0,他引:6  
1. The sensory functions of the inner ear (hearing and balance) critically depend on the precise regulation of two fluid compartments of highly desparate ion composition, i.e., the endolymph and the perilymph.2. The parameters volume, ion composition, and pH need to be held athomeostasis irrespective of the hydration status of the total organism.3. Specific cellular water channels, aquaporins, have been shown to be essential for the fluid regulation of several organs, e.g., kidney, lung, and brain.4. Because of functional similarities of water regulation in the kidney and inner ear this review initially summarizes some aquaporin functions in the kidney and then focuses on 6 out of 11 mammalian aquaporins that are present in the inner ear (AQP1-6).5. Their potential role in the inner ear fluid control will be discussed on the basis of the respective expression patterns and individual pore properties.6. Further, a working model is presented of how the endolymphatic sac may contribute to inner ear fluid regulation.  相似文献   

19.
20.
Pluripotent stem cells from the adult mouse inner ear   总被引:42,自引:0,他引:42  
Li H  Liu H  Heller S 《Nature medicine》2003,9(10):1293-1299
In mammals, the permanence of acquired hearing loss is mostly due to the incapacity of the cochlea to replace lost mechanoreceptor cells, or hair cells. In contrast, damaged vestibular organs can generate new hair cells, albeit in limited numbers. Here we show that the adult utricular sensory epithelium contains cells that display the characteristic features of stem cells. These inner ear stem cells have the capacity for self-renewal, and form spheres that express marker genes of the developing inner ear and the nervous system. Inner ear stem cells are pluripotent and can give rise to a variety of cell types in vitro and in vivo, including cells representative of ectodermal, endodermal and mesodermal lineages. Our observation that these stem cells are capable of differentiating into hair cell-like cells implies a possible use of such cells for the replacement of lost inner-ear sensory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号