首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
The geometry of the axial ligands of the hemes in the triheme cytochrome PpcA from Geobacter sulfurreducens was determined in solution for the ferric form using the unambiguous assignment of the NMR signals of the α-substituents of the hemes. The paramagnetic 13C shifts of the hemes can be used to define the heme electronic structure, the geometry of the axial ligands, and the magnetic susceptibility tensor. The latter establishes the magnitude and geometrical dependence of the pseudocontact shifts, which are crucial to warrant reliable structural constraints for a detailed structural characterization of this paramagnetic protein in solution.  相似文献   

2.
The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (i) the order in which hemes become oxidized is III-I-IV for PpcB, as opposed to I-IV-III for PpcA; (ii) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.  相似文献   

3.
Cytochromes c 7 are periplasmic triheme proteins that have been reported exclusively in δ-proteobacteria. The structures of five triheme cytochromes identified in Geobacter sulfurreducens and one in Desulfuromonas acetoxidans have been determined. In addition to the hemes and axial histidines, a single aromatic residue is conserved in all these proteins—phenylalanine 15 (F15). PpcA is a member of the G. sulfurreducens cytochrome c 7 family that performs electron/proton energy transduction in addition to electron transfer that leads to the reduction of extracellular electron acceptors. For the first time we probed the role of the F15 residue in the PpcA functional mechanism, by replacing this residue with the aliphatic leucine by site-directed mutagenesis. The analysis of NMR spectra of both oxidized and reduced forms showed that the heme core and the overall fold of the mutated protein were not affected. However, the analysis of 1H–15N heteronuclear single quantum coherence NMR spectra evidenced local rearrangements in the α-helix placed between hemes I and III that lead to structural readjustments in the orientation of heme axial ligands. The detailed thermodynamic characterization of F15L mutant revealed that the reduction potentials are more negative and the redox-Bohr effect is decreased. The redox potential of heme III is most affected. It is of interest that the mutation in F15, located between hemes I and III in PpcA, changes the characteristics of the two hemes differently. Altogether, these modifications disrupt the balance of the global network of cooperativities, preventing the F15L mutant protein from performing a concerted electron/proton transfer.  相似文献   

4.
Periplasmic sensor domains from two methyl-accepting chemotaxis proteins from Geobacter sulfurreducens (encoded by genes GSU0935 and GSU0582) were expressed in Escherichia coli. The sensor domains were isolated, purified, characterized in solution, and their crystal structures were determined. In the crystal, both sensor domains form swapped dimers and show a PAS-type fold. The swapped segment consists of two helices of about 45 residues at the N terminus with the hemes located between the two monomers. In the case of the GSU0582 sensor, the dimer contains a crystallographic 2-fold symmetry and the heme is coordinated by an axial His and a water molecule. In the case of the GSU0935 sensor, the crystals contain a non-crystallographic dimer, and surprisingly, the coordination of the heme in each monomer is different; monomer A heme has His-Met ligation and monomer B heme has His-water ligation as found in the GSU0582 sensor. The structures of these sensor domains are the first structures of PAS domains containing covalently bound heme. Optical absorption, electron paramagnetic resonance and NMR spectroscopy have revealed that the heme groups of both sensor domains are high-spin and low-spin in the oxidized and reduced forms, respectively, and that the spin-state interconversion involves a heme axial ligand replacement. Both sensor domains bind NO in their ferric and ferrous forms but bind CO only in the reduced form. The binding of both NO and CO occurs via an axial ligand exchange process, and is fully reversible. The reduction potentials of the sensor domains differ by 95 mV (− 156 mV and − 251 mV for sensors GSU0582 and GSU0935, respectively). The swapped dimerization of these sensor domains and redox-linked ligand switch might be related to the mechanism of signal transduction by these chemotaxis proteins.  相似文献   

5.
A family of five periplasmic triheme cytochromes (PpcA-E) was identified in Geobacter sulfurreducens, where they play a crucial role by driving electron transfer from the cytoplasm to the cell exterior and assisting the reduction of extracellular acceptors. The thermodynamic characterization of PpcA using NMR and visible spectroscopies was previously achieved under experimental conditions identical to those used for the triheme cytochrome c7 from Desulfuromonas acetoxidans. Under such conditions, attempts to obtain NMR data were complicated by the relatively fast intermolecular electron exchange. This work reports the detailed thermodynamic characterization of PpcB, PpcD, and PpcE under optimal experimental conditions. The thermodynamic characterization of PpcA was redone under these new conditions to allow a proper comparison of the redox properties with those of other members of this family. The heme reduction potentials of the four proteins are negative, differ from each other, and cover different functional ranges. These reduction potentials are strongly modulated by heme-heme interactions and by interactions with protonated groups (the redox-Bohr effect) establishing different cooperative networks for each protein, which indicates that they are designed to perform different functions in the cell. PpcA and PpcD appear to be optimized to interact with specific redox partners involving e/H+ transfer via different mechanisms. Although no evidence of preferential electron transfer pathway or e/H+ coupling was found for PpcB and PpcE, the difference in their working potential ranges suggests that they may also have different physiological redox partners. This is the first study, to our knowledge, to characterize homologous cytochromes from the same microorganism and provide evidence of their different mechanistic and functional properties. These findings provide an explanation for the coexistence of five periplasmic triheme cytochromes in G. sulfurreducens.  相似文献   

6.
The bacterium Geobacter sulfurreducens can transfer electrons to quinone moieties of humic substances or to anthraquinone-2,6-disulfonate (AQDS), a model for the humic acids. The reduced form of AQDS (AH2QDS) can also be used as energy source by G. sulfurreducens. Such bidirectional utilization of humic substances confers competitive advantages to these bacteria in Fe(III) enriched environments. Previous studies have shown that the triheme cytochrome PpcA from G. sulfurreducens has a bifunctional behavior toward the humic substance analogue. It can reduce AQDS but the protein can also be reduced by AH2QDS. Using stopped-flow kinetic measurements we were able to demonstrate that other periplasmic members of the PpcA-family in G. sulfurreducens (PpcB, PpcD and PpcE) also showed the same behavior. The extent of the electron transfer is thermodynamically controlled favoring the reduction of the cytochromes. NMR spectra recorded for 13C,15N-enriched samples in the presence increasing amounts of AQDS showed perturbations in the chemical shift signals of the cytochromes. The chemical shift perturbations on cytochromes backbone NH and 1H heme methyl signals were used to map their interaction regions with AQDS, showing that each protein forms a low-affinity binding complex through well-defined positive surface regions in the vicinity of heme IV (PpcB, PpcD and PpcE) and I (PpcE). Docking calculations performed using NMR chemical shift perturbations allowed modeling the interactions between AQDS and each cytochrome at a molecular level. Overall, the results obtained provided important structural-functional relationships to rationalize the microbial respiration of humic substances in G. sulfurreducens.  相似文献   

7.
The complete genome sequence of the delta-proteobacterium Geobacter sulfurreducens reveals a large abundance of multiheme cytochromes. Cytochrome c(7), isolated from this metal ion-reducing bacterium, is a triheme periplasmic electron-transfer protein with M(r) 9.6 kDa. This protein is involved in metal ion-reducing pathways and shares 56% sequence identity with a triheme cytochrome isolated from the closely related delta-proteobacterium Desulfuromonas acetoxidans (Dac(7)). In this work, two-dimensional NMR was used to monitor the heme core and the general folding in solution of the G. sulfurreducens triheme cytochrome c(7) (PpcA). NMR signals obtained for the three hemes of PpcA at different stages of oxidation were cross-assigned to the crystal structure [Pokkuluri, P. R., Londer, Y. Y., Duke, N. E. C., Long, W. C., and Schiffer, M. (2004) Biochemistry 43, 849-859] using the complete network of chemical exchange connectivities, and the order in which each heme becomes oxidized was determined at pH 6.0 and 8.2. Redox titrations followed by visible spectroscopy were also performed in order to monitor the macroscopic redox behavior of PpcA. The results obtained showed that PpcA and Dac(7) have different redox properties: (i) the order in which each heme becomes oxidized is different; (ii) the reduction potentials of the heme groups and the global redox behavior of PpcA are pH dependent (redox-Bohr effect) in the physiological pH range, which is not observed with Dac(7). The differences observed in the redox behavior of PpcA and Dac(7) may account for the different functions of these proteins and constitute an excellent example of how homologous proteins can perform different physiological functions. The redox titrations followed by visible spectroscopy of PpcA and two mutants of the conserved residue F15 (PpcAF15Y and PpcAF15W) lead to the conclusion that F15 modulates the redox behavior of PpcA, thus having an important physiological role.  相似文献   

8.
Multiheme cytochromes c are important in electron transfer pathways in reduction of both soluble and insoluble Fe(III) by Geobacter sulfurreducens. We determined the crystal structure at 3.2? resolution of the first dodecaheme cytochrome c (GSU1996) along with its N-terminal and C-terminal hexaheme fragments at 2.6 and 2.15? resolution, respectively. The macroscopic reduction potentials of the full-length protein and its fragments were measured. The sequence of GSU1996 can be divided into four c(7)-type domains (A, B, C and D) with homology to triheme cytochromes c(7). In cytochromes c(7) all three hemes are bis-His coordinated, whereas in c(7)-type domains the last heme is His-Met coordinated. The full-length GSU1996 has a 12nm long crescent shaped structure with the 12 hemes arranged along a polypeptide to form a "nanowire" of hemes; it has a modular structure. Surprisingly, while the C-terminal half of the protein consists of two separate c(7)-type domains (C and D) connected by a small linker, the N-terminal half of the protein has two c(7)-type domains (A and B) that form one structural unit. This is also observed in the AB fragment. There is an unexpected interaction between the hemes at the interface of domains A and B, which form a heme-pair with nearly parallel stacking of their porphyrin rings. The hemes adjacent to each other throughout the protein are within van der Waals distance which enables efficient electron exchange between them. For the first time, the structural details of c(7)-type domains from one multiheme protein were compared.  相似文献   

9.
Gene knock-out studies on Geobacter sulfurreducens cells showed that the periplasmic triheme cytochrome PpcA is involved in respiratory pathways leading to the extracellular reduction of Fe(III) and U(VI) oxides. The crucial role of this protein in bridging the electron transfer between the cytoplasm and cell exterior was further supported by proteomics studies. In comparison with non-heme proteins, the presence of numerous proton-containing groups in the heme groups causes additional challenges to the full protein assignment and structure calculation. Here, we report the complete assignment of the heme proton signals together with the 1H and 15N backbone and side chain assignments of the reduced form of PpcA.  相似文献   

10.
The facultative aerobic bacterium Geobacter sulfurreducens produces a small periplasmic c-type triheme cytochrome with 71 residues (PpcA) under anaerobic growth conditions, which is involved in the iron respiration. The thermodynamic properties of the PpcA redox centers and of a protonatable center were determined using NMR and visible spectroscopy techniques. The redox centers have negative and different reduction potentials (-162, -143, and -133 mV for heme I, III, and IV, respectively, for the fully reduced and protonated protein), which are modulated by redox interactions among the hemes (covering a range from 10 to 36 mV) and by redox-Bohr interactions (up to -62 mV) between the hemes and a protonatable center located in the proximity of heme IV. All the interactions between the four centers are dominated by electrostatic effects. The microscopic reduction potential of heme III is the one most affected by the oxidation of the other hemes, whereas heme IV is the most affected by the protonation state of the molecule. The thermodynamic properties of PpcA showed that pH strongly modulates the redox behavior of the individual heme groups. A preferred electron transfer pathway at physiologic pH is defined, showing that PpcA has the necessary thermodynamic properties to perform e-/H+ energy transduction, contributing to a H+ electrochemical potential gradient across the periplasmic membrane that drives ATP synthesis. PpcA is 46% identical in sequence to and shares a high degree of structural similarity with a periplasmic triheme cytochrome c7 isolated from Desulfuromonas acetoxidans, a bacterium closely related to the Geobacteracea family. However, the results obtained for PpcA are quite different from those published for D. acetoxidans c7, and the physiological consequences of these differences are discussed.  相似文献   

11.
《BBA》2020,1861(11):148271
The bacterium Geobacter metallireducens is highly efficient in long-range extracellular electron transfer, a process that relies on an efficient bridging between the cytoplasmic electron donors and the extracellular acceptors. The periplasmic triheme cytochromes are crucial players in these processes and thus the understanding of their functional mechanism is crucial to elucidate the extracellular electron transfer processes in this microorganism. The triheme cytochrome PpcF from G. metallireducens has the lowest amino acid sequence identity with the remaining cytochromes from the PpcA-family of G. sulfurreducens and G. metallireducens, making it an interesting target for structural and functional studies. In this work, we performed a detailed functional and thermodynamic characterization of cytochrome PpcF by the complementary usage of NMR and visible spectroscopic techniques. The results obtained show that the heme reduction potentials are negative, different from each other and are also modulated by the redox and redox-Bohr interactions that assure unprecedented mechanistic features to the protein. The results showed that the order of oxidation of the hemes in cytochrome PpcF is maintained in the entire physiological pH range. The considerable separation of the hemes' redox potential values facilitates a sequential transfer within the chain of redox centers in PpcF, thus assuring electron transfer directionality to the electron acceptors.  相似文献   

12.
PpcA is the most abundant member of a family of five triheme cytochromes c 7 in the bacterium Geobacter sulfurreducens (Gs) and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24%) among the family, and it was suggested to be involved in e/H+ energy transduction processes. In the present work, we investigated the functional role of lysine residues strategically located in the vicinity of each heme group. Each lysine was replaced by glutamine or glutamic acid to evaluate the effects of a neutral or negatively charged residue in each position. The results showed that replacing Lys9 (located near heme IV), Lys18 (near heme I) or Lys22 (between hemes I and III) has essentially no effect on the redox properties of the heme groups and are probably involved in redox partner recognition. On the other hand, Lys43 (near heme IV), Lys52 (between hemes III and IV) and Lys60 (near heme III) are crucial in the regulation of the functional mechanism of PpcA, namely in the selection of microstates that allow the protein to establish preferential e/H+ transfer pathways. The results showed that the preferred e/H+ transfer pathways are only established when heme III is the last heme to oxidize, a feature reinforced by a higher difference between its reduction potential and that of its predecessor in the order of oxidation. We also showed that K43 and K52 mutants keep the mechanistic features of PpcA by establishing preferential e/H+ transfer pathways at lower reduction potential values than the wild-type protein, a property that can enable rational design of Gs strains with optimized extracellular electron transfer capabilities.  相似文献   

13.
The biosynthesis of methylamine dehydrogenase (MADH) from Paracoccus denitrificans requires four genes in addition to those that encode the two structural protein subunits. None of these gene products have been previously isolated. One of these, mauG, exhibits sequence similarity to diheme cytochrome c peroxidases and is required for the synthesis of the tryptophan tryptophylquinone (TTQ) prosthetic group of MADH. A system was developed for the homologous expression of MauG in P. denitrificans. Its signal sequence was correctly processed, and it was purified from the periplasmic cell fraction. The protein contains two covalent c-type hemes, as predicted from the deduced sequence. EPR spectroscopy reveals that the protein as isolated possesses about equal amounts of one high-spin heme with axial symmetry and one low-spin heme with rhombic symmetry. The low-spin heme contains a major and minor component suggesting a small degree of heme heterogeneity. The high-spin heme and the major low-spin heme component each exhibit resonances that are atypical of c-type hemes and dissimilar to those reported for diheme cytochrome c peroxidases. MauG exhibited only very weak peroxidase activity when assayed with either c-type cytochromes or o-dianisidine as an electron donor. Fully reduced MauG was shown to bind carbon monoxide and could be reoxidized by oxygen. The relevance of these unusual properties of MauG is discussed in the context of its role in TTQ biogenesis.  相似文献   

14.
The periplasmic sensor domains GSU582 and GSU935 are part of methyl-accepting chemotaxis proteins of the bacterium Geobacter sulfurreducens containing one c-type heme and a PAS-like fold. Their spectroscopic properties were shown previously to share similar spectral features. In both sensors, the heme group is in the high-spin form in the oxidized state and low-spin after reduction and binding of a methionine residue. Therefore, it was proposed that this redox-linked ligand switch might be related to the signal transduction mechanism. We now report the thermodynamic and kinetic characterization of the sensors GSU582 and GSU935 by visible spectroscopy and stopped-flow techniques, at several pH and ionic strength values. Despite their similar spectroscopic features, the midpoint reduction potentials and the rate constants for reduction by dithionite are considerably different in the two sensors. The reduction potentials of both sensors are negative and well framed within the typical anoxic subsurface environments in which Geobacter species predominate. The midpoint reduction potentials of sensor GSU935 are lower than those of GSU582 at all pH and ionic strength values and the same was observed for the reduction rate constants. The origin of the different functional properties of these closely related sensors is rationalized in the terms of the structures. The results suggest that the sensors are designed to function in different working potential ranges, allowing the bacteria to trigger an adequate cellular response in different anoxic subsurface environments. These findings provide an explanation for the co-existence of two similar methyl-accepting chemotaxis proteins in G. sulfurreducens.  相似文献   

15.
J A Tan  J A Cowan 《Biochemistry》1990,29(20):4886-4892
A high molecular weight multiheme c-type cytochrome from the sulfate-reducing bacterium Desulfovibrio vulgaris (Hildenborough) has been spectroscopically characterized and compared with the tetraheme cytochrome c3. The protein contains a pentacoordinate high-spin heme (gz 6.0) and two hexacoordinate low-spin hemes (gz 2.95, gy 2.27, gx 1.48). From analysis of the g values for the low-spin hemes by the procedure of Blumberg and Peisach (Palmer, 1983) and comparison with with the optical spectra from a variety of c-type cytochromes, it is likely that these low-spin hemes are bound by two histidine residues. The NO derivative displayed typical rhombic EPR features (gx 2.07, gz 2.02, gy 1.99). Addition of azide does not lead to coupling between heme chromophores, but the ligand is accessible to the high-spin heme. The use of a glassy-carbon electrode to perform direct (no promoter) electrochemistry on the cytochrome is illustrated. Differential pulse polarography of the native protein gave two waves with reduction potentials of -59 (5) and -400 (8) mV (versus NHE). The cyanide adduct gave two waves with reduction potentials of -263 (8) and -401 (8) mV. The cytochrome was found to catalyze the reduction of nitrite and hydroxylamine.  相似文献   

16.
Multiheme cytochromes c have been found in a number of sulfate- and metal ion-reducing bacteria. Geobacter sulfurreducens is one of a family of microorganisms that oxidize organic compounds, with Fe(III) oxide as the terminal electron acceptor. A triheme 9.6 kDa cytochrome c7 from G. sulfurreducens is a part of the metal ion reduction pathway. We cloned the gene for cytochrome c7 and expressed it in Escherichiacoli together with the cytochrome c maturation gene cluster, ccmABCDEFGH, on a separate plasmid. We designed two constructs, with and without an N-terminal His-tag. The untagged version provided a good yield (up to 6 mg/l of aerobic culture) of the fully matured protein, with all three hemes attached, while the N-terminal His-tag appeared to be detrimental for proper heme incorporation. The recombinant protein (untagged) is properly folded, it has the same molecular weight and displays the same absorption spectra, both in reduced and in oxidized forms, as the protein isolated from G. sulfurreducens and it is capable of reducing metal ions in vitro. The shape parameters for the recombinant cytochrome c7 determined by small angle X-ray scattering are in good agreement with the ones calculated from a homologous cytochrome c7 of known structure.  相似文献   

17.
To understand general aspects of stability and folding of c-type cytochromes, we have studied the folding characteristics of cytochrome c553 from Desulfovibrio vulgaris (Hildenborough). This cytochrome is structurally similar but lacks sequence homology to other heme proteins; moreover, it has an abnormally low reduction potential. Unfolding of oxidized and reduced cytochrome c553 by guanidine hydrochloride (GuHCl) was monitored by circular dichroism (CD) and Soret absorption; the same unfolding curves were obtained with both methods supporting that cytochrome c553 unfolds by an apparent two-state process. Reduced cytochrome c553 is 7(3) kJ/mol more stable than the oxidized form; accordingly, the reduction potential of unfolded cytochrome c553 is 100(20) mV more negative than that of the folded protein. In contrast to many other unfolded cytochrome c proteins, upon unfolding at pH 7.0 both oxidized and reduced heme in cytochrome c553 become high-spin. The lack of heme misligation in unfolded cytochrome c553 implies that its unfolded structure is less constrained than those of cytochromes c with low-spin, misligated hemes.  相似文献   

18.
Aerobic phototrophic bacterium Roseobacter denitrificans has a nitric oxide reductase (NOR) homologue with cytochrome c oxidase (CcO) activity. It is composed of two subunits that are homologous with NorC and NorB, and contains heme c, heme b, and copper in a 1:2:1 stoichiometry. This enzyme has virtually no NOR activity. Electron paramagnetic resonance (EPR) spectra of the air-oxidized enzyme showed signals of two low-spin hemes at 15 K. The high-spin heme species having relatively low signal intensity indicated that major part of heme b3 is EPR-silent due to an antiferromagnetic coupling to an adjacent CuB forming a Fe-Cu binuclear center. Resonance Raman (RR) spectrum of the oxidized enzyme suggested that heme b3 is six-coordinate high-spin species and the other hemes are six-coordinate low-spin species. The RR spectrum of the reduced enzyme showed that all the ferrous hemes are six-coordinate low-spin species. ν(Fe-CO) and ν(C-O) stretching modes were observed at 523 and 1969 cm−1, respectively, for CO-bound enzyme. In spite of the similarity to NOR in the primary structure, the frequency of ν(Fe-CO) mode is close to those of aa3- and bo3-type oxidases rather than that of NOR.  相似文献   

19.
The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (i) the order in which hemes become oxidized is III-I-IV for PpcB, as opposed to I-IV-III for PpcA; (ii) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.  相似文献   

20.
Two-subunit SoxB-type cytochrome c oxidase in Bacillus stearothermophilus was over-produced, purified, and examined for its active site structures by electron paramagnetic resonance (EPR) and resonance Raman (RR) spectroscopies. This is cytochrome bo3 oxidase containing heme B at the low-spin heme site and heme O at the high-spin heme site of the binuclear center. EPR spectra of the enzyme in the oxidized form indicated that structures of the high-spin heme O and the low-spin heme B were similar to those of SoxM-type oxidases based on the signals at g=6.1, and g=3.04. However, the EPR signals from the CuA center and the integer spin system at the binuclear center showed slight differences. RR spectra of the oxidized form showed that heme O was in a 6-coordinated high-spin (nu3 = 1472 cm(-1)), and heme B was in a 6-coordinated low-spin (nu3 = 1500 cm(-1)) state. The Fe2+-His stretching mode was observed at 211 cm(-1), indicating that the Fe2+-His bond strength is not so much different from those of SoxM-type oxidases. On the contrary, both the Fe2+-CO stretching and Fe2+-C-O bending modes differed distinctly from those of SoxM-type enzymes, suggesting some differences in the coordination geometry and the protein structure in the proximity of bound CO in cytochrome bo3 from those of SoxM-type enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号