首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular stiffness has been shown to alter long timescale cell behaviors such as growth and differentiation, but the cellular response to changes in stiffness on short timescales is poorly understood. By studying the contractile response of cells to dynamic stiffness conditions using an atomic force microscope, we observe a seconds-timescale response to a step change in extracellular stiffness. Specifically, we observe acceleration in contraction velocity (μm/min) and force rate (nN/min) upon a step decrease in stiffness and deceleration upon a step increase in stiffness. Interestingly, this seconds-timescale response to a change in extracellular stiffness is not altered by inhibiting focal adhesion signaling or stretch-activated ion channels and is independent of cell height and contraction force. Rather, the response timescale is altered only by disrupting cytoskeletal mechanics and is well described by a simple mechanical model of a constant velocity actuator pulling against an internal cellular viscoelastic network. Consistent with the predictions of this model, we find that an osmotically expanding hydrogel responds to step changes in extracellular stiffness in a similar manner to cells. We therefore propose that an initial event in stiffness sensing is establishment of a mechanical equilibrium that balances contraction of the viscoelastic cytoskeleton with deformation of the extracellular matrix.  相似文献   

2.
A multitude of biochemical signaling processes have been characterized that affect gene expression and cellular activity. However, living cells often need to integrate biochemical signals with mechanical information from their microenvironment as they respond. In fact, the signals received by shape alone can dictate cell fate. This mechanotrasduction of information is powerful, eliciting proliferation, differentiation, or apoptosis in a manner dependent upon the extent of physical deformation. The cells internal "prestressed" structure and its "hardwired" interaction with the extra-cellular matrix (ECM) appear to confer this ability to filter biochemical signals and decide between divergent cell functions influenced by the nature of signals from the mechanical environment. In some instances mechanical signaling through the tissue microenvironment has been shown to be dominant over genomic defects, imparting a normal phenotype on cells that otherwise have transforming genetic lesions. This mechanical control of phenotype is postulated to have a central role in embryogenesis, tissue physiology as well as the pathology of a wide variety of diseases, including cancer. We will briefly review studies showing physical continuity between the external cellular microenvironment and the interior of the cell nucleus. Newly characterized structures, termed nuclear envelope lamina spanning complexes (NELSC), and their interactions will be described as part of a model for mechanical transduction of extracellular cues from the ECM to the genome.  相似文献   

3.
《Cellular signalling》2014,26(2):186-191
The mechanical signals transduced from cellular microenvironment can regulate cell shape and affect cell fate determination. However, how these mechanical signals are transduced to regulate biological processes of cells has remained elusive. Recent studies had elucidated a novel mechanism through which the interactions between mechanical signals from extracellular matrix and cell behavior regulation converged on the function of core components in Hippo signaling pathway, including YAP and TAZ in mammals. Moreover, several very recent studies have found a new crosstalk between Wnt and Hippo signaling in the regulation of cell fate determination. Such mechanism may explain how mechanical signals from microenvironment can regulate cell behavior and determine cell fate.  相似文献   

4.
近年来,有研究表表明从细胞微环境中转化而来的机械信号可以调控细胞形状和影响细胞的命运。然而,这些机械信号转化成调节细胞生物过程的信号的机制仍然不是十分清楚。最新研究已阐明细胞可通过来自细胞外基质(extracellular matrix,ECM)的机械信号和细胞行为调控之间的相互作用来募集Hippo信号通路中的核心组件YAP/TAZ的作用机制。此外,研究发现在Wnt和Hippo信号之间的串扰是调节细胞命运的核心。这些机制可以解释力学微环境的信号是如何调节细胞行为和决定细胞命运的。本文重点对ECM和YAP/TAZ在决定细胞命运的过程中的作用机制展开系统综述。  相似文献   

5.
BackgroundMorphology of cells can be considered as an interplay between the accessibility of substrate anchoring sites, cytoskeleton properties and cellular deformability. To withstand tension induced by cell's environment, cells tend to spread out and, simultaneously, to remodel actin filament organization.MethodsIn this context, the use of polyacrylamide hydrogel substrates with a surface coated with laminin allows to trace remodeling of actin cytoskeleton during the interaction of cells with laminin-rich basement membrane. Reorganization of actin cortex can be quantified by a surface spreading area and deformability of single cells.ResultsIn our study, we demonstrated that morphological and mechanical alterations of bladder cancer cells in response to altered microenvironment stiffness are of biphasic nature. Threshold-dependent relations are induced by mechanical properties of cell microenvironment. Initially, fast alterations in cellular capability to spread and to deform are followed by slow-rate changes. A switch provided by cellular deformability threshold, in the case of non-malignant cells, triggers the formation of thick actin bundles accompanied by matured focal adhesions. For cancer cells, cell spreading and deformability thresholds switch between slow and fast rate of changes with weak reorganization of actin filaments and focal adhesions formation.ConclusionsThe presence of transition region enables the cells to achieve a morphological and mechanical stability, which together with altered expression of vinculin and integrins, can contribute to invasiveness of bladder cancers.General significanceOur findings show that morphological and mechanical stability is directly related to actin filament organization used by cancer cells to adapt to altered laminin-rich microenvironment.  相似文献   

6.
The ability to harvest and maintain viable cells from mammalian tissues represented a critical advance in biomedical research, enabling individual cells to be cultured and studied in molecular detail. However, in these traditional cultures, cells are grown on rigid glass or polystyrene substrates, the mechanical properties of which often do not match those of the in vivo tissue from which the cells were originally derived. This mechanical mismatch likely contributes to abrupt changes in cellular phenotype. In fact, it has been proposed that mechanical changes in the cellular microenvironment may alone be responsible for driving specific cellular behaviors. Recent multidisciplinary efforts from basic scientists and engineers have begun to address this hypothesis more explicitly by probing the effects of ECM mechanics on cell and tissue function. Understanding the consequences of such mechanical changes is physiologically relevant in the context of a number of tissues in which altered mechanics may either correlate with or play an important role in the onset of pathology. Examples include changes in the compliance of blood vessels associated with atherosclerosis and intimal hyperplasia, as well as changes in the mechanical properties of developing tumors. Compelling evidence from 2-D in vitro model systems has shown that substrate mechanical properties induce changes in cell shape, migration, proliferation, and differentiation, but it remains to be seen whether or not these same effects translate to 3-D systems or in vivo. Furthermore, the molecular “mechanotransduction” mechanisms by which cells respond to changes in ECM mechanics remain unclear. Here, we provide some historical context for this emerging area of research, and discuss recent evidence that regulation of cytoskeletal tension by changes in ECM mechanics (either directly or indirectly) may provide a critical switch that controls cell function.  相似文献   

7.
The unfolded protein response (UPR) is a eukaryotic cellular adaptive mechanism that functions to cope with stress of the endoplasmic reticulum (ER). Accumulating evidence demonstrates that the tumor microenvironment contains stressors that elicit a UPR, which has been demonstrated to be a cell-intrinsic mechanism crucial for tumorigenesis. In addition, the UPR is a source of proinflammatory signaling whose downstream mediators may hamper antitumor immunity. We discuss how the UPR may impair Ag presentation, which could result in defective T cell priming, also leading to tumor escape and growth. Further, we discuss the recent finding that ER stress and attendant proinflammation can be transmitted from ER-stressed tumor cells to myeloid cells. The ideas presented suggest that, in addition to being a cell-intrinsic mechanism of tumor survival, the tumor UPR can serve as a cell-extrinsic regulator of tumorigenesis by remodeling the immune response in the tumor microenvironment.  相似文献   

8.
9.
Many cellular signaling events occur in small subcellular volumes and involve low-abundance molecular species. This context introduces two major differences from mass-action analyses of nondiffusive signaling. First, reactions involving small numbers of molecules occur in a probabilistic manner which introduces scatter in chemical activities. Second, the timescale of diffusion of molecules between subcellular compartments and the rest of the cell is comparable to the timescale of many chemical reactions, altering the dynamics and outcomes of signaling reactions. This study examines both these effects on information flow through four protein kinase regulatory pathways. The analysis uses Monte Carlo simulations in a subcellular volume diffusively coupled to a bulk cellular volume. Diffusion constants and the volume of the subcellular compartment are systematically varied to account for a range of cellular conditions. Each pathway is characterized in terms of the probabilistic scatter in active kinase levels as a measure of "noise" on the pathway output. Under the conditions reported here, most signaling outcomes in a volume below one femtoliter are severely degraded. Diffusion and subcellular compartmentalization influence the signaling chemistry to give a diversity of signaling outcomes. These outcomes may include washout of the signal, reinforcement of signals, and conversion of steady responses to transients.  相似文献   

10.
Although bacterial cells are known to experience large forces from osmotic pressure differences and their local microenvironment, quantitative measurements of the mechanical properties of growing bacterial cells have been limited. We provide an experimental approach and theoretical framework for measuring the mechanical properties of live bacteria. We encapsulated bacteria in agarose with a user-defined stiffness, measured the growth rate of individual cells and fit data to a thin-shell mechanical model to extract the effective longitudinal Young's modulus of the cell envelope of Escherichia coli (50-150 MPa), Bacillus subtilis (100-200 MPa) and Pseudomonas aeruginosa (100-200 MPa). Our data provide estimates of cell wall stiffness similar to values obtained via the more labour-intensive technique of atomic force microscopy. To address physiological perturbations that produce changes in cellular mechanical properties, we tested the effect of A22-induced MreB depolymerization on the stiffness of E. coli. The effective longitudinal Young's modulus was not significantly affected by A22 treatment at short time scales, supporting a model in which the interactions between MreB and the cell wall persist on the same time scale as growth. Our technique therefore enables the rapid determination of how changes in genotype and biochemistry affect the mechanical properties of the bacterial envelope.  相似文献   

11.
The recency-primacy shift (RPS) indicates that memory for early list items improves and memory for later items becomes worse as the retention interval between study and test increases. In this contribution, this puzzling experimental finding--memory improving with time--is found to be consistent with a model in which recognition is temporarily interfered with by its own storage process (self-interference). I show that this interpretation can qualitatively better account for the RPS experimental data than can the dimensional distinctiveness model, the only other outstanding explanation of the RPS. Two experimental predictions separate the 2 models: The dimensional distinctiveness model predicts no RPS for 2-item lists, in contrast to self-interference, and as the overall timescale is changed, the dimensional distinctiveness model predicts no difference in the RPS whereas self-interference predicts significant changes.  相似文献   

12.
Cancer deaths are primarily caused by metastases, not by the parent tumor. During metastasis, malignant cells detach from the parent tumor, and spread through the circulatory system to invade new tissues and organs. The physical-chemical mechanisms and parameters within the cellular microenvironment that initiate the onset of metastasis, however, are not understood. Here we show that human colon carcinoma (HCT-8) cells can exhibit a dissociative, metastasis-like phenotype (MLP) in vitro when cultured on substrates with appropriate mechanical stiffness. This rather remarkable phenotype is observed when HCT-8 cells are cultured on gels with intermediate-stiffness (physiologically relevant 21-47 kPa), but not on very soft (1 kPa) and very stiff (3.6 GPa) substrates. The cell-cell adhesion molecule E-Cadherin, a metastasis hallmark, decreases 4.73 ± 1.43 times on cell membranes in concert with disassociation. Both specific and nonspecific cell adhesion decrease once the cells have disassociated. After reculturing the disassociated cells on fresh substrates, they retain the disassociated phenotype regardless of substrate stiffness. Inducing E-Cadherin overexpression in MLP cells only partially reverses the MLP phenotype in a minority population of the dissociated cells. This important experiment reveals that E-Cadherin does not play a significant role in the upstream regulation of the mechanosensing cascade. Our results indicate, during culture on the appropriate mechanical microenvironment, HCT-8 cells undergo a stable cell-state transition with increased in vitro metastasis-like characteristics as compared to parent cells grown on standard, very stiff tissue culture dishes. Nuclear staining reveals that a large nuclear deformation (major/minor axis ratio, 2:5) occurs in HCT-8 cells when cells are cultured on polystyrene substrates, but it is markedly reduced (ratio, 1:3) in cells grown on 21 kPa substrates, suggesting the cells are experiencing different intracellular forces when grown on stiff as compared to soft substrates. Furthermore, MLP can be inhibited by blebbistatin, which inactivates myosin II activity and relaxes intracellular forces. This novel finding suggests that the onset of metastasis may, in part, be linked to the intracellular forces and the mechanical microenvironment of the tumor.  相似文献   

13.
The flow of information within a cell is governed by a series of protein–protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed on reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor–ligand binding model and a rule‐based model of interleukin‐12 (IL‐12) signaling in naïve CD4+ T cells. The IL‐12 signaling pathway includes multiple protein–protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based on the available data. The analysis correctly predicted that reactions associated with Janus Kinase 2 and Tyrosine Kinase 2 binding to their corresponding receptor exist at a pseudo‐equilibrium. By contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL‐12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank‐ and flux‐based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule‐based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

14.
The hostile tumor microenvironment results in the generation of intracellular stresses including hypoxia and nutrient deprivation. In order to adapt to such conditions, the cell utilizes several stress-response mechanisms, including the attenuation of protein synthesis, the inhibition of cellular proliferation, and induction of autophagy. Autophagy leads to the degradation of cellular contents, including damaged organelles and mutant proteins, which the cell can then use as an alternate energy source. Two integral changes to the signaling milieu to promote such a response include inhibition of the mammalian target of rapamycin complex 1 (mTORC1) and phosphorylation of eIF2α. This review will describe how conditions found in the tumor microenvironment regulate mTORC1 as well as eIF2α, the downstream impact of these modifications, and the implications in tumorigenesis. We will then discuss the remarkable similarities and overlapping function of these 2 signaling pathways, focusing on the response to amino acid deprivation, and present a new model involving crosstalk between them based on our recent work.  相似文献   

15.
A series of studies on Hermissenda classical conditioning has lead to a discovery that the biophysical events (accumulation of Ca2+ and depolarization in B cell) found during memory acquisition are clearly distinct from those (suppression of K-currents, IA and ICa2+K+) detected in the retention phase of memory. Biochemical analysis of eyes isolated shortly after (a few hours) training revealed increased phosphorylation of a 20,000 M.W. protein which is very likely one of the substrates for both Ca/CaM-dependent protein kinase and C-kinase and possibly a locus of convergence for conditioned stimulus and unconditioned stimulus pathways. Furthermore, conditioning-specific changes in the two K+ currents have been reproduced by simultaneous activation of the CaM-kinase pathway (via iontophoretic injection of CaM-kinase II plus Ca2+-load or IP3 injection) and the C-kinase pathway (via bath application of phorbol-ester or diacylglycerol analog plus Ca2+-load). Therefore, synergistic interaction between the two Ca2+-dependent phosphorylation systems in the identified B cell is considered to be critically important for acquisition of associative memory. Evidence also has been obtained for similar biophysical changes and molecular mechanisms during retention of classical conditioning in the mammalian brain. Further work will be needed to uncover the biochemical mechanism(s) responsible for transforming short-term into long-lasting memory.  相似文献   

16.
Antigenic and costimulatory signals trigger a developmental program by which naive CD8 T cells differentiate into effector and memory cells. However, initial cytokine signals that regulate the generation of effector and memory CD8 T cells are not well understood. In this study, we show that IL-12 priming during in vitro antigenic stimulation results in the significant increase of both primary and memory CD8 T cell population in mice after adoptive transfer of activated cells. The effect of IL-12 priming is closely associated with qualitative changes in CD8 T cells, such as reduced MHC I tetramer binding and CD69 expression, altered distribution of lipid rafts, decreased cytolytic activity, and less susceptibility to apoptosis. Furthermore, exogenous IL-12 priming improved the intrinsic survival properties of memory CD8 T cells, leading to better protective immunity and vaccine-induced memory CD8 T cell responses. However, the experiments with IL-12p40- and IL-12Rbeta1-deficient mice showed similar levels of primary and memory CD8 T cell responses compared with wild-type mice, implying that endogenous IL-12 and/or IL-12R signaling in vivo is not critical for CD8 T cell immunity. Together, our results suggest that IL-12 can serve as an important, but dispensable regulatory factor for the development of CD8 T cells, and IL-12 priming could be useful in many medical applications.  相似文献   

17.
Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.  相似文献   

18.
王棋文  靳伟  常翠芳  徐存拴 《遗传》2015,37(3):276-282
为探讨自噬对大鼠肝再生中树突状细胞(Dendritic cells, DCs)的调节作用,文章通过Percoll 密度梯度离心结合免疫磁珠分选分离大鼠DCs,Rat Genome 230 2.0芯片检测大鼠肝再生中自噬相关基因表达变化,利用IPA等软件分析自噬在DCs中的生理活动。结果表明,LC3、BECN1、ATG7和SQSTM1等关键基因在部分肝切除后不同恢复时间段有明显表达变化;芯片中对应的自噬相关基因为593个,其中210个基因发生了有意义的变化。比较分析自噬生理活动情况,发现自噬在再生早期和晚期阶段增强,增殖期减弱。与自噬相关的生理活动主要有RNA表达、RNA转录细胞分化和增殖,其中涉及的信号通路主要有PPARα/RXRα激活、急性期反应、TREM1 信号通路、IL-6 信号通路、IL-8 信号通路和IL-1 信号通路等,它们在肝再生阶段发生了不同程度的上调或下调。Cluster 分析还发现,P53和AMPK信号参与调控DCs的自噬活动,在肝再生早期主要是AMPK信号,在肝再生末期P53和AMPK信号共同参与自噬的调节。以上研究结果说明DCs自噬可能在肝再生早期激活细胞免疫反应和后期清除DCs等方面发挥着重要作用。  相似文献   

19.
Apoptosis can be routinely characterized using biomolecular markers such as in the TUNEL and the annexin V assays or by using fluorescent caspase substrates. Apoptosis can also be semi-quantitatively characterized using microscopy, which targets morphological features such as cell rounding, nuclear condensation and fragmentation as well as cell membrane blebbing. This label-free approach provides a limited resolution for the evolution of these events in time and relies heavily on subjective identification of the morphological features. Here we propose a label-free assay based on surface plasmon resonance (SPR) detection of minute morphology changes occurring as a result of apoptosis induction in an endothelial cell model (EA.hy926). At first, annexin V assays confirmed that our cellular model was responsive to TRAIL over a 12-hour period. Then, we show that SPR allows accurate monitoring of apoptosis by measuring (1) the duration of the latency period during which the apoptotic signal is integrated by the initiator caspases and transmitted to the executioner caspases, (2) the rate of the execution phase in which death substrates are cleaved and morphological changes occur, and (3) the total extent of apoptosis. Using these parameters, we characterized the responses obtained with TRAIL (EA.hy926, HeLa, AD-293) and the anti-Fas antibody (HeLa) for the extrinsic pathways and UV exposure (HeLa) for the intrinsic pathways. By comparing the SPR time-course of apoptosis with phase contrast micrographs, we demonstrate that the cell morphological hallmarks of apoptosis are the major contributors to the SPR signal. Altogether, our results validate the use of SPR as an accurate label-free assay for the real-time monitoring of apoptosis-triggered cell morphological changes.  相似文献   

20.
Artificial abnormal microenvironment caused by microperfusion of l-glutamate (Glu) and Ca2+ in the hippocampus results in neuron damage, which is closely related to cerebral ischemia. Ginsenoside Rb1, a compound from Panax notoginseng, was previously used to counter the artificial abnormal hippocampal environment in a microperfusion model. In addition, while the Akt/mTOR/PTEN signaling pathway has been shown to mediate neuronprotection in cerebral ischemia, whether this pathway is involved in the neuroprotection of ginsenoside Rb1 is unknown. Here SH-SY5Y cells exposed to OGD/R injury in treated with LY294002, ginsenoside Rb1, ginsenoside Rb1+?LY294002. Expressions of phosphorylation (P-)Akt/P-mTOR/P-PTEN (24 h after OGD/R) were detected by Western blotting. Effects were examined via the memory function of rats (by Morris water maze test), morphological changes in pyramidal cell (by histology), and mRNA expression (by qRT-PCR) and phosphorylation (P-) (by Western blotting and immunohistochemical staining) of Akt, P-mTOR, and P-PTEN in the hippocampus. The memory deficit of rats and pyramidal cellular necrosis and apoptosis in the CA1 region of hippocampus after microperfusion of Glu and Ca2+ were dose dependently alleviated by ginsenoside Rb1.Moreover,Western blot showed that ginsenoside Rb1 increased the expressions of P-Akt, P-mTOR and reduced P-PTEN in vivo and vitro. Thus, the potent neuroprotection of ginsenoside Rb1 in artificial abnormal microenvironment is, at least partially, related to the activation of P-AKT/P-mTOR signaling pathway and inhibition of P-PTEN protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号