首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Objective

To investigate the potential involvements of E-cadherin and β-catenin in meningioma.

Methods

Immunohistochemistry staining was performed on samples from patients with meningioma. The results were graded according to the positive ratio and intensity of tissue immunoreactivity. The expression of E-cadherin and β-catenin in meningioma was analyzed by its relationship with WHO2007 grading, invasion, peritumoral edema and postoperative recurrence.

Results

The positive rates of E-cadherin in meningioma WHO I, II, III were 92.69%, 33.33% and 0, respectively, (P<0.05); while the positive rates of β-catenin in meningioma WHO I, II, III were 82.93%, 33.33% and 20.00%, respectively, (P<0.05). The positive rate of E-cadherin in meningioma without invasion (94.12%) was higher than that with invasion (46.67%) (P<0.05). The difference in the positive rate of β-catenin between meningioma without invasion (88.24%) and meningioma with invasion (33.33%, P<0.05) was also statically significant. The positive rates of E-cadherin in meningioma with peritumoral edema 0, 1, 2, 3 were 93.75%, 85.71%, 60.00% and 0 respectively, (P<0.05); the positive rates of β-catenin in meningioma with peritumoral edema 0, 1, 2, 3 were 87.50%, 85.71%, 30.00% and 0 respectively, (P<0.01). The positive rates of E- cadherin in meningioma with postoperative recurrence were 33.33%, and the positive rate with postoperative non-recurrence was 90.00% (P<0.01). The positive rates of β-catenin in meningioma with postoperative recurrence and non-recurrence were 11.11%, 85.00%, respectively (P<0.01).

Conclusion

The expression levels of E- cadherin and β-catenin correlated closely to the WHO 2007 grading criteria for meningioma. In atypical or malignant meningioma, the expression levels of E-cadherin and β-catenin were significantly lower. The expression levels of E- cadherin and β-catenin were also closely correlated with the invasion status of meningioma, the size of the peritumoral edema and the recurrent probabilities of the meningioma, all in an inverse correlationship. Taken together, the present study provided novel molecular targets in clinical treatments to meningioma.  相似文献   

2.
A spheroid is an in vitro multicellular aggregate that provides a microenvironment resembling that of normal tissue in vivo. Although cell adhesion molecules such as integrins and cadherins have been implicated in participating in the process of spheroid formation, little is known about the timing of their action. In this study, we have employed an image-based quantitative method to investigate the compactness of cell aggregates during hepatoma spheroid formation in a dynamic fashion. By modulating β1-integrin and E-cadherin activity with specific blocking antibodies, ion chelators, and RGD-sequence-containing peptides, we show that these cell adhesion molecules mediate the formation of spheroids through the establishment of complex cell-cell and cell-extracellular matrix (ECM) interactions. The dynamics of spheroid formation can be separated into three stages. In the first stage, ECM fibers act as a long-chain linker for the attachment of dispersed single-cells to form loose aggregations through the binding of integrins. This is followed by a delay period in which cell aggregates pause in compaction, presumably because of the accumulation of sufficient amounts of E-cadherins. In the third stage, strong homophilic interaction of E-cadherins is a major factor for the morphological transition from loose cell aggregates to compact spheroids. These findings thus provide comprehensive information on the molecular mechanisms and dynamics of hepatoma spheroid formation.This work was supported by the National Program of Genome Medicine, ROC (NSC 93-3112-B007-001) and Veteran General Hospitals University System of Taiwan Joint Research Program (VGHUST94-G6-06-3).  相似文献   

3.
E-cadherin is a transmembrane protein that serves as a cell adhesion molecule component of the adherens junction. We previously showed that cadmium induced γ-secretase-dependent E-cadherin cleavage via oxidative stress. In this study, we report that staurosporine (STS)-induced apoptosis induces caspase-2 and/or -8-dependent E-cadherin cleavage. STS increased γ-secretase-dependent cleavage of E-cadherin in breast cancer cells through caspase activation. The ability of the γ-secretase inhibitor DAPT and the caspase inhibitor zVAD-FMK to block E-cadherin cleavage provided support for these results. The cleavage of E-cadherin was blocked by caspase-2 and -8 inhibitors. Immunofluorescence analysis confirmed that, along with the disappearance of E-cadherin staining at the cell surface, the E-cadherin cytoplasmic domain accumulated in the cytosol. In the presence of an inhibitor of γ-secretase or caspase, the cleavage of E-cadherin was partially blocked. Our findings suggest that activation of caspase-2/-8 stimulated the disruption of cadherin-mediated cell-cell contacts in apoptotic cells via γ-secretase activation.  相似文献   

4.
The progression of several human cancers correlates with the loss of cytoplasmic protein α-catenin from E-cadherin-rich intercellular junctions and loss of adhesion. However, the potential role of α-catenin in directly modulating the adhesive function of individual E-cadherin molecules in human cancer is unknown. Here we use single-molecule force spectroscopy to probe the tensile strength, unstressed bond lifetime, and interaction energy between E-cadherins expressed on the surface of live human parental breast cancer cells lacking α-catenin and these cells where α-catenin is re-expressed. We find that the tensile strength and the lifetime of single E-cadherin/E-cadherin bonds between parental cells are significantly lower over a wide range of loading rates. Statistical analysis of the force displacement spectra reveals that single cadherin bonds between cancer cells feature an exceedingly low energy barrier against tensile forces and low molecular stiffness. Disassembly of filamentous actin using latrunculin B has no significant effect on the strength of single intercellular E-cadherin bonds. The absence of α-catenin causes a dominant negative effect on both global cell-cell adhesion and single E-cadherin bond strength. These results suggest that the loss of α-catenin alone drastically reduces the adhesive force between individual cadherin pairs on adjoining cells, explain the global loss of cell adhesion in human breast cancer cells, and show that the forced expression of α-catenin in cancer cells can restore both higher intercellular avidity and intercellular E-cadherin bond strength.The reduction of intercellular adhesion in a solid tumor is a critical step in the progression of tumor cells to metastasis (1). How normal cells lose their ability to form strong adhesions within a tissue is not well understood (2, 3). The loss of adhesion between adjoining epithelial cells and the ensuing onset of metastasis occur through an epithelial-to-mesenchymal transition that often correlates with the loss of cytoplasmic protein α-catenin and a poor prognosis in a wide range of cancers, including breast (4), esophageal (5), gastric (6, 7), cervical (8), and colorectal cancer (9). In normal epithelial tissues, α-catenin localizes to junctions that organize at the interface between adjacent epithelial cells through clustering of cell surface adhesion transmembrane molecule cadherin and its association to the cytoskeleton (10, 11). On the extracellular side, structural studies suggest that cadherin molecules form molecular pairs that interact with cadherin pairs on an adjacent cell through their distal Ca2+-binding domains (12). On the intracellular side, cadherin pairs are connected to the cytoskeleton network through specific linker proteins. Until recently it was believed that one critical linker protein between the cytoplasmic domain of cadherin and the actin cytoskeleton was α-catenin, because it can both bind filamentous actin (F-actin) and E-cadherin through β-catenin (13, 14). However, a recent study indicates that α-catenin can either bind the E-cadherin-β-catenin complex as monomer or cross-link actin filaments as homodimer but cannot bind both E-cadherin-β-catenin and F-actin simultaneously (15). Therefore, whether the loss of α-catenin plays a direct role in the loss of adhesion in human cancer cells is unclear.Our recent data using engineered Chinese hamster ovarian cells suggest that α-catenin mediates the rapid strengthening of individual intercellular E-cadherin/E-cadherin bonds following initial molecular recognition between cells bearing E-cadherin molecules (16). Furthermore, α-catenin mediates the formation of additional E-cadherin/E-cadherin bonds once a first bond is formed between adjoining cells to form a nascent intercellular junction (16). Here we hypothesize that the loss of cytoplasmic protein α-catenin in human cancer cells greatly affects the ability of E-cadherin molecules on the surface of these cells to form firm adhesion by reducing the strength of individual intercellular E-cadherin/E-cadherin bonds.Our strategy is to compare parental breast cancer cells that lack α-catenin (MDA-MB-468 cells; denoted here MDA468) with these cells when α-catenin is introduced and exploit high resolution live cell single-molecule force spectroscopy (17) to probe the strength of individual E-cadherin/E-cadherin bonds between adjacent cells (18). The cells are juxtaposed for a controlled time of contact, the probability of successful interactions is subsequently measured, and the mechanical properties (tensile strength, molecular stiffness, and reactive compliance) and biochemical properties (interaction energy, dissociation rate, and bond lifetime) of single intercellular E-cadherin/E-cadherin bonds are analyzed.Our main hypothesis cannot be readily tested using purified proteins. Our ability to measure molecular interactions between live cells (17) rather than recombinant proteins ensures that the proper orientation of cadherin on the cell surfaces and its post-translational modifications are physiological. Moreover, using living cells ensures that the cytoplasmic domain of transmembrane receptors (here human E-cadherin) can interact with cytoplasmic proteins (in particular β-catenin and α-catenin), thereby allowing cell signaling pathways that can influence cell adhesion to function normally.  相似文献   

5.
ObjectiveTo determine the correlation of cell adhesion molecules (osteopontin-c, E-cadherin and β-catenin) with clinicopathological characteristics in breast cancer.MethodsImmunostaining of osteopontin-c, E-cadherin and β-catenin were conducted in 170 samples of breast cancer and 30 samples of adjacent normal breast tissues. The correlation of osteopontin-c, E-cadherin and β-catenin expression level with clinicopathological characteristics was evaluated by Pearson's chi-square and Wilcoxon rank-sum test. Univariate and multivariate Cox hazard regression model was used to assess the prognostic values of osteopontin-c, E-cadherin and β-catenin in clinical outcome of breast cancer.ResultsA higher level of osteopontin-c whereas lower levels of E-cadherin and β-catenin were observed in breast cancer as compared with the normal breast tissues. The expression of osteopontin-c was negatively associated with the expression of E-cadherin and β-catenin. The expression of osteopontin-c correlated with lymph node metastasis, and advanced TNM stage and histologic grade. The expression of E-cadherin correlated with low histologic grade; and β-catenin with low TNM stage and histological grade. Moreover, high osteopontin-c level correlated with tumor recurrence or metastasis as well as triple negative subtype. The expression of osteopontin-c was an independent prognostic factor for both disease-free and overall survival of breast cancer patients.ConclusionThe data suggest that the expression of osteopontin-c could serve as a prognostic factor of breast cancer.  相似文献   

6.
Upregulated gene 11 (URG11), recently identified as a new HBx-upregulated gene that may activate β-catenin and Wnt signaling, was found to be upregulated in a human tubule cell line under low oxygen. Here, we investigated the potential role of URG11 in hypoxia-induced renal tubular epithelial-to-mesenchymal (EMT). Overexpression of URG11 in a human proximal tubule cell line (HK2) promoted a mesenchymal phenotype accompanied by reduced expression of the epithelial marker E-cadherin and increased expression of the mesenchymal markers vimentin and α-SMA, while URG11 knockdown by siRNA effectively reversed hypoxia-induced EMT. URG11 promoted the expression of β-catenin and increased its nuclear accumulation under normoxic conditions through transactivation of the β-catenin promoter. This in turn upregulated β-catenin/T-cell factor (TCF) and its downstream effector genes, vimentin, and α-SMA. In vivo, strong expression of URG11 was observed in the tubular epithelia of 5/6-nephrectomized rats, and a Western blot analysis demonstrated a close correlation between HIF-1α and URG11 protein levels. Altogether, our results indicate that URG11 mediates hypoxia-induced EMT through the suppression of E-cadherin and the activation of the β-catenin/TCF pathway.  相似文献   

7.
WNTs (wingless-type MMTV integration site family, member) are morphogenes considered as important factors taking part in uterus developmental processes and implantation. β-catenin is a downstream effector of WNTs action within the cell as well as, through E-cadherin, affecting epithelial organization and function. This study was conducted to investigate WNT4, WNT5A, WNT7A, β-catenin (CTNNB1) and E-cadherin (CDH1) gene expression and protein localization in the endometrium during the periimplantation period. Furthermore, the effect of 17β-estradiol (E2) and progesterone (P4) on WNTs, CTNNB1 and CDH1 gene expression in the porcine endometrium in vitro was examined. WNT4 protein was localized in the luminal and glandular epithelium as well as in the basal lamina of the uterine mucosa. WNT5A protein was detected only in the luminal epithelium. WNT7A, β-catenin and E-cadherin protein were identified both in the luminal and glandular epithelial cells, however, WNT7A protein immunoreactivity varied during respective days of estrous cycle and/or pregnancy. Despite unchanged expression of WNT4 mRNA in the endometrium of cyclic and early pregnant pigs, the negative influence of E2 on WNT4 gene during in vitro experiment was observed. WNT4 and CDH1 gene expression was negatively correlated with blood plasma E2 and P4 level in uterine luminal flushings (ULFs) on Day 12 of pregnancy. Expression of WNT5A gene was up-regulated in the endometrium on Day 9 of pregnancy when compared to the respective day of the estrous cycle. A significant decrease of WNT7A gene expression and increase of CDH1 mRNA amount was detected on Day 12 of pregnancy. Overall, the results show the spatial localization of WNT4, WNT5A, WNT7A, β-catenin and E-cadherin proteins in porcine endometrium during periimplantation period of pregnancy and indicate significant changes of WNT5A, WNT7A and CDH1 gene expression before implantation in the pig.  相似文献   

8.
9.
E-cadherin 参与形成细胞间黏附性连接,是胚胎发育过程中的一个关键因子。越来越多的研究表明,E-cadherin 在肿瘤的发生发 展过程中也发挥了至关重要的作用。在生物体内,E-cadherin 的表达和功能受到多个水平、多重因素的调控,而 E-cadherin 又可以影响 多条重要信号通路的活性,参与到多种生理病理过程中。E-cadherin 下调造成细胞间黏附性连接减少、极性减弱,细胞由上皮样转变为间 质样,这一变化是上皮间质转化(EMT)的重要标志之一。E-cadherin 与多种肿瘤的发生有一定的相关性。同时 E-cadherin 下调所引起 的 EMT 促进肿瘤细胞的迁移运动,肿瘤细胞侵袭力增强,促进转移的发生。近年来,大量研究关注到 E-cadherin 对肿瘤细胞的耐药及干 细胞特性的获得都有影响。综述 E-cadherin 在肿瘤发生发展中的作用,探讨以 E-cadherin 为靶点的肿瘤治疗的现状及展望。  相似文献   

10.
Geng F  Shi BZ  Yuan YF  Wu XZ 《Cell research》2004,14(5):423-433
It is well documented that the glycosylation of E-cadherin is correlated with cancer metastasis, but whether E-cadherin could be core fucosylated remains largely unknown. We found that E-cadherin was core fucosylated in highly metastatic lung cancer cells while absent in lowly metastatic lung cancer cells. Sinceα-1,6 Fucosyltransferase (α-1,6 FucT) is known to catalyze the reaction of core fucosylation, we investigated the biological function of core fucosylation on E-cadherin by α-1,6 FucT targeted RNAi and transfecting α-1,6 FucT expression vector. As a result, calcium dependent cell-cell adhesion mediated by E-cadherin was strengthened with the reduction of core fucosylation on E-cadherin after RNAi and was weakened with the elevated core fucosylation on E-cadherin after α-1,6 FucT over expression. Our data indicated that α-1,6 FucT could regulate E-cadherin mediated cell adhesion and thus play an important role in cancer development and progression. Computermodeling showed that core fucosylation on E-cadherin could significantly impair three-dimensional conformation of N-glycan on E-cadherin and produce conformational asymmetry so as to suppress the function of E-cadherin. Furthermore, the relationship between the expression of core fucosylated E-cadherin and clinicopathological background of lung cancer patients was explored in lung cancer tissue of patients. It turns out to demonstrate that core fucosylated E-cadherin could serve as a promising prognostic indicator for lung cancer patients.  相似文献   

11.

Background

The APC tumour suppressor functions in several cellular processes including the regulation of β-catenin in Wnt signalling and in cell adhesion and migration.

Findings

In this study, we establish that in epithelial cells N-terminally phosphorylated β-catenin specifically localises to several subcellular sites including cell-cell contacts and the ends of cell protrusions. N-terminally phosphorylated β-catenin associates with E-cadherin at adherens junctions and with APC in cell protrusions. We isolated APC-rich protrusions from stimulated cells and detected β-catenin, GSK3β and CK1α, but not axin. The APC/phospho-β-catenin complex in cell protrusions appears to be distinct from the APC/axin/β-catenin destruction complex. GSK3β phosphorylates the APC-associated population of β-catenin, but not the cell junction population. β-catenin associated with APC is rapidly phosphorylated and dephosphorylated. HGF and wound-induced cell migration promote the localised accumulation of APC and phosphorylated β-catenin at the leading edge of migrating cells. APC siRNA and analysis of colon cancer cell lines show that functional APC is required for localised phospho-β-catenin accumulation in cell protrusions.

Conclusions

We conclude that N-terminal phosphorylation of β-catenin does not necessarily lead to its degradation but instead marks distinct functions, such as cell migration and/or adhesion processes. Localised regulation of APC-phospho-β-catenin complexes may contribute to the tumour suppressor activity of APC.  相似文献   

12.
E-cadherin is a member of the cadherin family of Ca2+-dependent cell-cell adhesion molecules. p120-Catenin and δ-catenin are known to bind to similar juxtamembrane regions of E-cadherin, and p120-catenin is known to stabilize E-cadherin. However, the function of competition between p120-catenin and δ-catenin for E-cadherin has not been fully explained. In this report, we show that cells overexpressing δ-catenin contain less p120-catenin than control cells at the cell-cell interface and that this causes the relocalization of p120-catenin from the plasma membrane to the cytosol. We show that successful binding by one to E-cadherin adversely affects the stability of the other.  相似文献   

13.
目的:检测鼻咽癌组织中上皮细胞钙黏蛋白(E-cadherin)的表达情况,探讨E-cad与肿瘤侵袭、转移的关系。方法:收集临床确诊的存档鼻咽低分化鳞癌石蜡标本40例,鼻炎标本20例。将每个标本的4长切片分别进行HE染色、免疫组化PV二步法及阴性对照。HE确认病理类型,结合临床资病例料进行TNM分期,根据PV二步法染色结果检测E-cadherin的表达,所得结果用SPSSl7.0进行统计学检验。结果:E-cadherin在鼻咽癌组织对比中呈不同程度的降低(P=0.002),与性别、年龄无明显相关,与T分期(P=0.023)、淋巴结转移(P=0.001)、TNM分期(P=0.000)显著相关。结论:1:E-cadherin在鼻咽癌组和对照组的表达有显著的差别,可能参与了鼻咽癌的发生发展。2:E-cadherin的表达与肿瘤的淋巴结转移和病理分期有相关性,但与年龄和性别无相关性。E-cadherin的表达缺失是肿瘤远处转移的重要指标。3:E-cadherin表达水平可能作为肿瘤侵袭,预测鼻咽癌颈部淋巴结隐匿性转移的潜在肿瘤标志物。  相似文献   

14.
《Cellular signalling》2014,26(4):757-765
Since its discovery in biopsies from breast cancer patients, the effect of corticotropin-releasing hormone (CRH) on carcinoma progression is still unclear. Transforming growth factorβ1 (TGFβ1) promotes Epithelial–Mesenchymal Transition (EMT) and induces Snail1 and Twist1 expressions. Loss of epithelial cadherin (E-cadherin) mainly repressed by Snail1 and Twist1, has been considered as hallmark of Epithelial–Mesenchymal Transition (EMT). Two breast cancer cell lines, MCF-7 and MDA-MB-231 were used to investigate the effect of CRH on TGFβ1-induced EMT by transwell chamber. And HEK293 cells were transiently transfected with CRHR1 or CRHR2 to explore the definite effects of CRH receptor. We reported that CRH inhibited migration of human breast cancer cells through downregulation of Snail1 and Twist1, and subsequent upregulation of E-cadherin. CRH inhibited TGFβ1-mediated migration of MCF-7 via both CRHR1 and CRHR2 while this inhibition in MDA-MB-231 was mainly via CRHR2. Ectopic re-expression of CRHR1 or CRHR2 respectively in HEK293 cells increased E-cadherin expression after CRH stimulation. Furthermore, CRH repressed expression of mesenchymal marker, N-cadherin and induced expression of Occludin, inhibiting EMT in MCF-7 & MDA-MB-231. Our results suggest that CRH may function as a tumor suppressor, at least partly by regulating TGFβ1-mediated EMT. These results may contribute to uncovering the effect of CRH in breast tumorigenesis and progression.  相似文献   

15.
Summary Human E-cadherin is a homophilic cell adhesion molecule and its expression is well preserved in normal human hepatocytes; a decrease in its expression has been observed in poorly differentiated hepatocellular carcinoma cells. We examined the alteration of E-cadherin and catenin expressions caused by differentiation inducers in human hepatocellular carcinoma cells. Hepatocellular carcinoma cell lines, HCC-T and HCC-M, were cultured with all-trans retinoic acid (ATRA), dexamethasone (DEX), sodium butyrate, and interferon-α. E-cadherin expression was only up-regulated by butyrate and interferon-α (IFN-α) in both cell lines, studied by means of fluorescence immunostaining and flow cytometry. The localization of E-cadherin staining was shown at their cell membrane. According to the increase in E-cadherin expression, β-catenin expression appeared at the cell membrane of both cell lines when treated with butyrate and IFN-α. Such an appearance was not observed when cells were treated with ATRA and DEX. Western blotting showed that α-and γ-catenin expression was not changed, while only the expression of β-catenin increased. β-Catenin oncogenic activation as a result of amino acid substitutions or interstitial deletions within or including parts of exon 3, which has been demonstrated recently, was not detected in these cell lines by direct deoxyribonucleic acid sequencing. These results suggest that the expression and interaction between E-cadherin and wild-type β-catenin are potentially modulated by butyrate and IFN-α, and that these two agents are potent inhibitors of hepatocellular carcinoma cell invasion and metastasis.  相似文献   

16.

Background

TGF-β1 plays an important role in the epithelial–mesenchymal transition (EMT) of epithelial cancers, including non-small cell lung cancer (NSCLC). While the full underlying mechanism remains unclear, miR-9 is known to play a critical role in the regulation of NSCLC cell invasion. We tested whether miR-9 targets E-cadherin and thus affects TGF-β1-induced EMT in NSCLC cells by assessing the expression levels of miR-9 and E-cadherin for NSCLC patients and then verifying the targeting of E-cadherin by miR-9 using the dual luciferase reporter system.

Results

MiR-9 was significantly upregulated in NSCLC tissues compared with its level in adjacent normal tissues. The expression of E-cadherin in NSCLC tissues was significantly decreased. In addition, we found that TGF-β1 significantly upregulated the expression of miR-9 and downregulated the expression of E-cadherin. E-cadherin was confirmed as a direct target gene of miR-9. Using an miR-9 inhibitor reversed the TGF-β1-mediated inhibition of E-cadherin expression and upregulation of the mesenchymal marker α-SMA. TGF-β1 significantly induced cell invasion, and this effect was significantly inhibited by miR-9 inhibitors.

Conclusions

TGF-β1 induced EMT in NSCLC cells by upregulating miR-9 and downregulating miR-9’s target, E-cadherin.
  相似文献   

17.
摘要目的:检测鼻咽癌组织中上皮细胞钙黏蛋白(E-cadherin)的表达情况,探讨E-cad 与肿瘤侵袭、转移的关系。方法:收集临床 确诊的存档鼻咽低分化鳞癌石蜡标本40例,鼻炎标本20 例。将每个标本的4 长切片分别进行HE染色、免疫组化PV 二步法及 阴性对照。HE 确认病理类型,结合临床资病例料进行TNM分期,根据PV 二步法染色结果检测E-cadherin 的表达,所得结果用 SPSS17.0 进行统计学检验。结果:E-cadherin 在鼻咽癌组织对比中呈不同程度的降低(P=0.002),与性别、年龄无明显相关,与T 分 期(P=0.023)、淋巴结转移(P=0.001)、TNM 分期(P=0.000)显著相关。结论:1:E-cadherin 在鼻咽癌组和对照组的表达有显著的差 别,可能参与了鼻咽癌的发生发展。2:E-cadherin 的表达与肿瘤的淋巴结转移和病理分期有相关性,但与年龄和性别无相关性。 E-cadherin 的表达缺失是肿瘤远处转移的重要指标。3:E-cadherin 表达水平可能作为肿瘤侵袭,预测鼻咽癌颈部淋巴结隐匿性转 移的潜在肿瘤标志物。  相似文献   

18.
目的:探讨E-cadherin在胃癌术后复发预测中的临床意义。方法:选择我院2006年1月至2010年7月收治的胃癌或者胃食管连接部癌行胃癌根治性切除术后259例患者为研究对象,将其分为术后复发组(115例)和术后未复发组(144例),采用免疫组织化学方法检测其E-cadherin的表达,并分析E-cadherin的异常表达与胃癌术后复发的相关性。结果:胃癌癌旁正常组织与胃癌组织间E-cadherin的表达有显著差异(P0.05);胃癌术后复发与未复发患者的胃癌组织E-cadherin的表达比较有显著差异(P0.05)。E-cadherin的异常表达与胃癌的浸润深度、淋巴结转移和TNM分期显著相关(P0.05)。单因素Logistic回归分析发现,E-cadherin的异常表达的与胃癌术后复发有显著的相关性(P=0.039,RR=1.711,95%Cl为1.486-1.970)。结论:E-cadherin的异常表达与胃癌根治性切除术后复发显著相关。  相似文献   

19.
张瑞  徐江 《生物磁学》2009,(13):2573-2575
肿瘤细胞的侵袭和转移是恶性肿瘤的主要特征之一,其间涉及多种机制,研究表明某些蛋白在肿瘤的转移过程中起着重要的作用,其中上皮钙粘蛋白(E-cadherin)β-连环蛋白(β-catenin)与肿瘤发生、发展及转移有密切关系的蛋白之一。本文就β-catenin和E-cadherin与肿瘤发展,转移关系的研究进展作一综述。  相似文献   

20.
目的探讨E-cadherin在人输卵管妊娠蜕膜组织中的表达及其临床意义。方法应用免疫组织化学方法检测输卵管妊娠蜕膜组织中E-cadherin的表达,同时以正常输卵管粘膜为对照。结果E-cadherin在输卵管妊娠组中的表达低于正常输卵管组,差异有显著性(P<0.05)。结论E-cadherin的低表达可能是引起人输卵管妊娠的因素之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号