首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Living cells generate, sense, and respond to mechanical forces through their interaction with neighboring cells or extracellular matrix, thereby regulating diverse cellular processes such as growth, motility, differentiation, and immune responses. Dysregulation of mechanosensitive signaling pathways is found associated with the development and progression of various diseases such as cancer. Yet, little is known about the mechanisms behind mechano-regulation, largely due to the limited availability of tools to study it at the molecular level. The recent development of molecular tension probes allows measurement of cellular forces exerted by single ligand-receptor interaction, which has helped in revealing the hitherto unknown mechanistic details of various mechanosensitive processes in living cells. Here, we provide an introductory overview of two methods based on molecular tension probes, tension gauge tether (TGT), and molecular tension fluorescence microscopy (MTFM). TGT utilizes the irreversible rupture of double-stranded DNA tether upon application of force in the piconewton (pN) range, whereas MTFM utilizes the reversible extension of molecular springs such as polymer or single-stranded DNA hairpin under applied pN forces. Specifically, the underlying principle of how molecular tension probes measure cell-generated mechanical forces and their applications to mechanosensitive biological processes are described.  相似文献   

2.
The exercise pressor reflex is evoked by both mechanical and metabolic stimuli. Tendon stretch does not increase muscle metabolism and therefore is used to investigate the mechanical component of the exercise pressor reflex. An important assumption underlying the use of tendon stretch to study the mechanical component of the exercise pressor reflex is that stretch stimulates the same group III mechanosensitive muscle afferents as does static contraction. We have tested the veracity of this assumption in decerebrated cats by comparing the responses of group III and IV muscle afferents to tendon stretch with those to static contraction. The tension-time indexes as well as the peak tension development for both maneuvers did not significantly differ. We found that static contraction of the triceps surae muscles stimulated 18 of 30 group III afferents and 8 of 11 group IV afferents. Similarly, tendon stretch stimulated 14 of 30 group III afferents and 3 of 11 group IV afferents. However, of the 18 group III afferents that responded to static contraction and the 14 group III afferents that responded to tendon stretch, only 7 responded to both stimuli. On average, the conduction velocities of the 18 group III afferents that responded to static contraction (11.6 +/- 1.6 m/s) were significantly slower (P = 0.03) than those of the 14 group III afferents that responded to tendon stretch (16.7 +/- 1.5 m/s). We have concluded that tendon stretch stimulated a different population of group III mechanosensitive muscle afferents than did static contraction. Although there is some overlap between the two populations of group III mechanosensitive afferents, it is not large, comprising less than half of the group III afferents responding to static contraction.  相似文献   

3.
Feedback regulation by activation of mechanosensitive afferents in the exercising muscle causes the cardiovascular and sympathetic nerve responses, which follow tension development and are almost identical between static contraction and passive stretch. The precise location of the mechanoreceptors contributing to the exercise pressor reflex, however, remained unknown. To test the hypothesis that the mechanoreceptors will be located around the myotendinous junction to monitor a change in muscle tension than a change in muscle length, we examined the reflex cardiovascular responses to passive stretch of the triceps surae muscle in anesthetized rats with three interventions; systemic injection of gadolinium, cutting the Achilles tendon, and local injection of lidocaine into the myotendinous junction. Gadolinium (42 micromol/kg iv) blunted the increases in heart rate and mean arterial blood pressure during passive stretch by 36 and 22-26%, respectively, suggesting that the reflex cardiovascular responses were evoked by stimulation of muscle mechanosensitive receptors. The cardiovascular responses to passive stretch were not different between the cut Achilles tendon and the intact tendon in the same rats, suggesting that any mechanoreceptors, terminated in the more distal part of the tendon, did not contribute to the reflex cardiovascular responses. Lidocaine (volume, 0.04-0.1 ml) injected into the myotendinous junction blunted the stretch-induced increases in heart rate and mean arterial blood pressure by 37-49 and 27-34%, respectively. We conclude that the muscle mechanosensitive receptors evoking the reflex cardiovascular responses at least partly locate at or close to the myotendinous junction of the Achilles tendon.  相似文献   

4.
5.
Bone adapts to its environment by a process in which osteoblasts and osteocytes sense applied mechanical strain. One possible pathway for the detection of strain involves mechanosensitive channels and we sought to determine their sensitivity to membrane strain and tension. We used a combination of experimental and computational modeling techniques to gain new insights into cell mechanics and the regulation of mechanosensitive channels. Using patch-clamp electrophysiology combined with video microscopy, we recorded simultaneously the evolution of membrane extensions into the micropipette, applied pressure, and membrane currents. Nonselective mechanosensitive cation channels with a conductance of 15 pS were observed. Bleb aspiration into the micropipette was simulated using finite element models incorporating the cytoplasm, the actin cortex, the plasma membrane, cellular stiffening in response to strain, and adhesion between the membrane and the micropipette. Using this model, we examine the relative importance of the different cellular components in resisting suction into the pipette and estimate the membrane strains and tensions needed to open mechanosensitive channels. Radial membrane strains of 800% and tensions of 5 10(-4) N.m(-1) were needed to open 50% of mechanosensitive channels. We discuss the relevance of these results in the understanding of cellular reactions to mechanical strain and bone physiology.  相似文献   

6.
IL-6-induced skeletal muscle atrophy.   总被引:4,自引:0,他引:4  
Chronic, low-level elevation of circulating interleukin (IL)-6 is observed in disease states as well as in many outwardly healthy elderly individuals. Increased plasma IL-6 is also observed after intense, prolonged exercise. In the context of skeletal muscle, IL-6 has variously been reported to regulate carbohydrate and lipid metabolism, increase satellite cell proliferation, or cause muscle wasting. In the present study, we used a rodent local infusion model to deliver modest levels of IL-6, comparable to that present after exercise or with chronic low-level inflammation in the elderly, directly into a single target muscle in vivo. The aim of this study was to examine the direct effects of IL-6 on skeletal muscle in the absence of systemic changes in this cytokine. Data included cellular and molecular markers of cytokine and growth factor signaling (phosphorylation and mRNA content) as well as measurements to detect muscle atrophy. IL-6 infusion resulted in muscle atrophy characterized by a preferential loss of myofibrillar protein (-17%). IL-6 induced a decrease in the phosphorylation of ribosomal S6 kinase (-60%) and STAT5 (-33%), whereas that of STAT3 was increased approximately twofold. The changes seen in the IL-6-infused muscles suggest alterations in the balance of growth factor-related signaling in favor of a more catabolic profile. This suggests that downregulation of growth factor-mediated intracellular signaling may be a mechanism contributing to the development of muscle atrophy induced by elevated IL-6.  相似文献   

7.
Corynebacterium glutamicum MscCG, also referred to as NCgl1221, exports glutamate when biotin is limited in the culture medium. MscCG is a homolog of Escherichia coli MscS, which serves as an osmotic safety valve in E. coli cells. Patch-clamp experiments using heterogeneously expressed MscCG have shown that MscCG is a mechanosensitive channel gated by membrane stretch. Although the association of glutamate secretion with the mechanosensitive gating has been suggested, the electrophysiological characteristics of MscCG have not been well established. In this study, we analyzed the mechanosensitive gating properties of MscCG by expressing it in E. coli spheroplasts. MscCG is permeable to glutamate, but is also permeable to chloride and potassium. The tension at the midpoint of activation is 6.68 ± 0.63 mN/m, which is close to that of MscS. The opening rates at saturating tensions and closing rates at zero tension were at least one order of magnitude slower than those observed for MscS. This slow kinetics produced strong opening-closing hysteresis in response to triangular pressure ramps. Whereas MscS is inactivated under sustained stimulus, MscCG does not undergo inactivation. These results suggest that the mechanosensitive gating properties of MscCG are not suitable for the response to abrupt and harmful changes, such as osmotic downshock, but are tuned to execute slower processes, such as glutamate export.  相似文献   

8.
Corynebacterium glutamicum MscCG, also referred to as NCgl1221, exports glutamate when biotin is limited in the culture medium. MscCG is a homolog of Escherichia coli MscS, which serves as an osmotic safety valve in E. coli cells. Patch-clamp experiments using heterogeneously expressed MscCG have shown that MscCG is a mechanosensitive channel gated by membrane stretch. Although the association of glutamate secretion with the mechanosensitive gating has been suggested, the electrophysiological characteristics of MscCG have not been well established. In this study, we analyzed the mechanosensitive gating properties of MscCG by expressing it in E. coli spheroplasts. MscCG is permeable to glutamate, but is also permeable to chloride and potassium. The tension at the midpoint of activation is 6.68 ± 0.63 mN/m, which is close to that of MscS. The opening rates at saturating tensions and closing rates at zero tension were at least one order of magnitude slower than those observed for MscS. This slow kinetics produced strong opening-closing hysteresis in response to triangular pressure ramps. Whereas MscS is inactivated under sustained stimulus, MscCG does not undergo inactivation. These results suggest that the mechanosensitive gating properties of MscCG are not suitable for the response to abrupt and harmful changes, such as osmotic downshock, but are tuned to execute slower processes, such as glutamate export.  相似文献   

9.
Subjecting a muscle to a series of eccentric contractions in which the contracting muscle is lengthened results in a number of changes in its mechanical properties. These include a fall in isometric tension that is particularly pronounced during low-frequency stimulation, a phenomenon known as low-frequency depression (LFD). Reports of LFD have not taken into account the shift in optimum length for active tension generation to longer muscle lengths that takes place after eccentric contractions. Given the length dependence of the stimulation frequency-tension curve, we tested the hypothesis that the change in this relationship after eccentric exercise is due to the shift in optimum length. We measured LFD by recording tension in response to a linearly increasing rate of stimulation of the nerve to medial gastrocnemius of anesthetized cats, over the range 0-100 pulses per second. Tension responses were measured before and after 50 eccentric contractions consisting of 6-mm stretches starting at 3 mm below optimum length and finishing at 3 mm above it. An index of LFD was derived from the tension responses to ramp stimulation. It was found that LFD after the eccentric contractions was partly, but not entirely, due to changes in the muscle's optimum length. An additional factor was the effect of fatigue. These observations led to the conclusion that the muscle length dependence of LFD was reduced by eccentric contractions. All of this means that after eccentric exercise the tension deficit at low rates of muscle activation is likely to be less severe than first thought.  相似文献   

10.
Multiconformation membrane proteins are mechanosensitive (MS) if their conformations displace different bilayer areas. Might MS closed-closed transitions serve as tension buffers, that is, as membrane “spandex”? While bilayer expansion is effectively instantaneous, transitions of bilayer-embedded MS proteins are stochastic (thermally activated) so spandex kinetics would be critical. Here we model generic two-state (contracted/expanded) stochastic spandexes inspired by known bacterial osmovalves (MscL, MscS) then suggest experimental approaches to test for spandex-like behaviors in these proteins. Modeling shows: 1), spandex kinetics depend on the transition state location along an area reaction coordinate; 2), increasing membrane concentration of a spandex right-shifts its midpoint (= tension-Boltzmann); 3), spandexes with midpoints below the activating tension of an osmovalve could optimize osmovalve deployment (required: large midpoint, barrier near the expanded state); 4), spandexes could damp bilayer tension excursions (required: midpoint at target tension, and for speed, barrier halfway between the contracted and expanded states; the larger the spandex Δ-area, the more precise the maintenance of target tension; higher spandex concentrations damp larger amplitude strain fluctuations). One spandex species could not excel as both first line of defense for osmovalve partners and tension damper. Possible interactions among MS closed-closed and closed-open transitions are discussed for MscS- and MscL-like proteins.  相似文献   

11.
Patch clamp electrophysiology is the main technique to study mechanosensitive ion channels (MSCs), however, conventional patch clamping is laborious and success and output depends on the skills of the operator. Even though automated patch systems solve these problems for other ion channels, they could not be applied to MSCs. Here, we report on activation and single channel analysis of a bacterial mechanosensitive ion channel using an automated patch clamp system. With the automated system, we could patch not only giant unilamellar liposomes but also giant Escherichia coli (E. coli) spheroplasts. The tension sensitivity and channel kinetics data obtained in the automated system were in good agreement with that obtained from the conventional patch clamp. The findings will pave the way to high throughput fundamental and drug screening studies on mechanosensitive ion channels.  相似文献   

12.
The sarcomeric M-band is thought to provide a link between the thick and the elastic filament systems. So far, relatively little is known about its structural components and their three-dimensional organisation. Myomesin seems to be an essential component of the M-band, since it is expressed in all types of vertebrate striated muscle fibres investigated and can be found in its mature localisation pattern as soon as the first myofibrils are assembled. Previous work has shown that the N-terminal and central part of myomesin harbour binding sites for myosin, titin and muscle creatine kinase. Intrigued by the highly conserved domain layout of the C-terminal half, we screened for new interaction partners by yeast two-hybrid analysis. This revealed a strong interaction of myomesin with itself. This finding was confirmed by several biochemical assays. Our data suggest that myomesin can form antiparallel dimers via a binding site residing in its C-terminal domain 13. We suggest that, similar to alpha-actinin in the Z-disc, the myomesin dimers cross-link the contractile filaments in the M-band. The new and the already previously identified myomesin interaction sites are integrated into the first three-dimensional model of the sarcomeric M-band on a molecular basis.  相似文献   

13.
After a single bout of exercise, insulin action is increased in the muscles that were active during exercise. The increased insulin action has been shown to involve glucose transport, glycogen synthesis, and glycogen synthase (GS) activation as well as amino acid transport. A major mechanism involved in increased insulin stimulation of glucose uptake after exercise seems to be the exercise-associated decrease in muscle glycogen content. Muscle glycogen content also plays a pivotal role for the activity of GS and for the ability of insulin to increase GS activity. Insulin signaling in human skeletal muscle is activated by physiological insulin concentrations, but the increase in insulin action after exercise does not seem to be related to increased insulin signaling [insulin receptor tyrosine kinase activity, insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (RS1), IRS-1-associated phosphatidylinositol 3-kinase activity, Akt phosphorylation (Ser(473)), glycogen synthase kinase 3 (GSK3) phosphorylation (Ser(21)), and GSK3alpha activity], as measured in muscle lysates. Furthermore, insulin signaling is also largely unaffected by exercise itself. This, however, does not preclude that exercise influences insulin signaling through changes in the spatial arrangement of the signaling compounds or by affecting unidentified signaling intermediates. Finally, 5'-AMP-activated protein kinase has recently entered the stage as a promising player in explaining at least a part of the mechanism by which exercise enhances insulin action.  相似文献   

14.
Mechanical stimuli increase skeletal muscle growth in a mammalian target of rapamycin (mTOR)- and p70(S6K)-dependent manner. It has been proposed that costameric proteins at Z bands may sense and transfer tension to these initiators of protein translation, but few candidates have been identified. The purpose of this study was to determine whether a role exists for the α(7)-integrin in the activation of hypertrophic signaling and growth following eccentric exercise training. Five-week-old, wild-type (WT) and α(7)BX2-integrin transgenic (α(7)Tg) mice were randomly assigned to one of two groups: 1) sedentary (SED), or 2) exercise training (EX). Exercise training consisted of downhill running 3 sessions/wk for 4 wk (-20°, 17 m/min, 30 min). Downhill running was used to induce physiological mechanical strain. Twenty-four hours following the final training session, maximal isometric hindlimb plantar flexor force was measured. Gastrocnemius-soleus complexes were collected for further analysis of signaling changes, which included AKT, mTOR and p70(S6K), and muscle growth. Despite increased p70(S6K) activity in WT/EX, no significant changes in cross-sectional area or force were observed in WT/EX compared with WT/SED. AKT, mTOR, and p70(S6K) activation was higher, and whole muscle hypertrophy, relative muscle weight, myofibrillar protein, and force were significantly elevated in α(7)Tg/EX compared with α(7)Tg/SED. A marked increase in average myofiber cross-sectional area was observed in α(7)Tg/EX compared with all groups. Our findings demonstrate that the α(7)β(1)-integrin sensitizes skeletal muscle to mechanical strain and subsequent growth. Thus the α(7)β(1)-integrin may represent a novel molecular therapy for the treatment of disuse muscle atrophy.  相似文献   

15.
PurposeSurrogate models have been postulated for (re-)registration of external remedies for pain, whose active substances are in accordance to monographs. In a new human model, we investigated an ointment consisting of high dosed herbal ingredients.MethodsWe conducted a clinical study in 32 healthy volunteers. Four muscle regions were treated with the ointments (verum on the one side and placebo on the other) in a randomized and doubleblinded manner immediately after a standardized physical exercise with individual intensity, as well as after 1, 2 and 24 h. Acute muscle pain and muscle tension for each region was documented repeatedly during the following two days by visual analogue scale (VAS). Primary outcome parameter was the difference of pain during the follow up given as area under the curve (AUC) of VAS for corresponding right and left regions, treated with verum or placebo. Also the difference of muscle tension was documented and evaluated in an analogous way.Results30 out of 32 included patients finished the study, but developed only moderate muscle pain, with highest pain scores for extension muscles of the arm. There was less pain in the course for the verum in 3 of the 4 regions, the mean difference of individual AUCs was at highest for the extension (triceps) muscles of the arm, but between-group differences failed significance. Feeling of muscle tension was higher than that of pain, with smaller mean AUCs of verum in all 4 regions; the differences were significant in total (p<0.02) and in 2 of 4 single regions.ConclusionsPhysical exercise was not intensive enough to exert clear symptoms. Our volunteers with sportive background seem not to show severe symptoms of muscle pain and muscle tension even after an intensive training. Despite low levels of symptoms, verum showed better courses of muscle tension and muscle pain. For future studies it seems better not to use volunteers with sportive background but totally untrained persons in order to achieve pronounced symptoms. The model is feasible, sensitive, inexpensive and is much more clinically relevant than those, focusing on perfusion parameters of skin.  相似文献   

16.
In sarcomeres of striated muscles the middle parts of adjacent thick filaments are connected to each other by the M-band proteins. To understand the role of the M-band in sarcomere mechanics a model of forces which pull a thick filament to opposite Z-disks of a sarcomere is considered. Forces of actin-myosin cross-bridges, I-band titin segments and the M-band are accounted for. A continual expression for the M-band force is obtained assuming that the M-band proteins which connect neighbor thick filaments have nonlinear elastic properties. On the ascending and descending limbs of the force-length diagram cross-bridge forces tend to destabilize sarcomere while titin tries to restore its symmetric configuration. When destabilizing cross-bridge force exceeds a critical limit, symmetric configuration of a sarcomere becomes unstable and the M-band buckles. Stiffness of the M-band increases stability only if the M-band is anchored to the extra-sarcomere cytoskeleton. Realistic magnitudes of the M-band buckling require that the M-band proteins have essentially nonlinear elasticity. The buckling may explain the M-band bending and axial misalignment of the thick filaments observed in contracting muscle. We hypothesize that the buckling stretches the titin protein kinase domain localized in the M-band being the signal for mechanical control of gene expression and protein turnover in striated muscle.  相似文献   

17.
Blood flow restriction (BFR) to contracting skeletal muscle during low-intensity resistance exercise training increases muscle strength and size in humans. However, the mechanism(s) underlying these effects are largely unknown. We have previously shown that mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis (MPS) are stimulated following an acute bout of BFR exercise. The purpose of this study was to test the hypothesis that reactive hyperemia is the mechanism responsible for stimulating mTORC1 signaling and MPS following BFR exercise. Six young men (24 ± 2 yr) were used in a randomized crossover study consisting of two exercise trials: low-intensity resistance exercise with BFR (BFR trial) and low-intensity resistance exercise with sodium nitroprusside (SNP), a pharmacological vasodilator infusion into the femoral artery immediately after exercise to simulate the reactive hyperemia response after BFR exercise (SNP trial). Postexercise mixed-muscle fractional synthetic rate from the vastus lateralis increased by 49% in the BFR trial (P < 0.05) with no change in the SNP trial (P > 0.05). BFR exercise increased the phosphorylation of mTOR, S6 kinase 1, ribosomal protein S6, ERK1/2, and Mnk1-interacting kinase 1 (P < 0.05) with no changes in mTORC1 signaling in the SNP trial (P > 0.05). We conclude that reactive hyperemia is not a primary mechanism for BFR exercise-induced mTORC1 signaling and MPS. Further research is necessary to elucidate the cellular mechanism(s) responsible for the increase in mTOR signaling, MPS, and hypertrophy following acute and chronic BFR exercise.  相似文献   

18.
We investigatedthe role of the integrin-associated proteins focal adhesion kinase(FAK) and paxillin as mediators of mechanosensitive signal transductionin tracheal smooth muscle. In muscle strips contracted isometricallywith ACh, we observed higher levels of tyrosine phosphorylation of FAKand paxillin at the optimal muscle length(Lo) than atshorter muscle lengths of 0.5 or 0.75 Lo. Paxillinphosphorylation was also length sensitive in muscles activated byK+ depolarization and adjustedrapidly to changes in muscle length imposed after contractileactivation by either ACh or K+depolarization. Ca2+ depletion didnot affect the length sensitivity of paxillin and FAK phosphorylationin muscles activated with ACh, indicating that the mechanotransductionprocess can be mediated by aCa2+-independent pathway. SinceCa2+-depleted muscles do notgenerate significant active tension, this suggests that themechanotransduction mechanism is sensitive to muscle length rather thantension. We conclude that FAK and paxillin participate in anintegrin-mediated mechanotransduction process in tracheal smoothmuscle. We propose that this pathway may initiate alterations in smoothmuscle cell structure and contractility via the remodeling of actinfilaments and/or via the mechanosensitive regulation ofsignaling molecules involved in contractile protein activation.

  相似文献   

19.
Abstract. The purpose of this study was to investigate the mechanism behind the high sensitivity of thymidine kinase 1 (TK1) to X-irradiation. The deoxythymidine triphosphate (dTTP) pool was studied in mouse ascites tumour cells 1–24 h after X-irradiation with 5 Gy. Irradiation changed the Michaelis-Menten kinetics of TK1 from linear to biphasic, showing a negative co-operativity. These changes were closely related to changes in the dTTP pool. Addition of dTTP to the cell extract of non-irradiated cells, or thymidine (dTdR) to the culture medium, resulted in changes very similar to the kinetics found in the irradiated cells. Addition of 5¢-amino-5¢-deoxythymidine (5¢-AdTdR), a thymidine analogue that eliminated the inhibitory effect of dTTP on TK1 activity, completely abolished the irradiation-induced inhibition of TK1 activity. We suggest that the reduced TK1 activity is mainly due to an elevated intracellular concentration of dTTP.  相似文献   

20.
Mutations in the C terminus of titin, situated at the M-band of the striated muscle sarcomere, cause tibial muscular dystrophy (TMD) and limb-girdle muscular dystrophy (LGMD) type 2J. Mutations in the protease calpain 3 (CAPN3), in turn, lead to LGMD2A, and secondary CAPN3 deficiency in LGMD2J suggests that the pathomechanisms of the diseases are linked. Yeast two-hybrid screens carried out to elucidate the molecular pathways of TMD/LGMD2J and LGMD2A resulted in the identification of myospryn (CMYA5, cardiomyopathy-associated 5) as a binding partner for both M-band titin and CAPN3. Additional yeast two-hybrid and coimmunoprecipitation studies confirmed both interactions. The interaction of myospryn and M-band titin was supported by localization of endogenous and transfected myospryn at the M-band level. Coexpression studies showed that myospryn is a proteolytic substrate for CAPN3 and suggested that myospryn may protect CAPN3 from autolysis. Myospryn is a muscle-specific protein of the tripartite motif superfamily, reported to function in vesicular trafficking and protein kinase A signaling and implicated in the pathogenesis of Duchenne muscular dystrophy. The novel interactions indicate a role for myospryn in the sarcomeric M-band and may be relevant for the molecular pathomechanisms of TMD/LGMD2J and LGMD2A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号