首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Halorhodospira halochloris is an anaerobic, halophilic, purple photosynthetic bacterium belonging to γ-Proteobacteria. H. halochloris is also characteristic as a thermophilic phototrophic isolate producing bacteriochlorophyll (BChl) b. Here, we report the complete genome sequence of H. halochloris DSM 1059. The genetic arrangement for this bacterium’s photosynthetic apparatus is of particular interest; its genome contains two sets of puf operons encoding the reaction center and core light-harvesting 1 (LH1) complexes having almost identical nucleotide sequences (e.g., 98.8–99.9% of nucleotide identities between two sets of pufLM genes, but 100% of deduced amino acid sequence identities). This duplication of photosynthetic genes may provide a glimpse at natural selection in action. The β-polypeptides of the LH1 complex in purple bacteria usually contain two histidine residues to bind BChl a; however, those of H. halochloris were revealed to have four histidine residues, indicating unusual pigment organization in the LH1 complex of this species. Like in other BChl b-producing phototrophs, the genome of H. halochloris lacks the divinyl reductase genes bciA and bciB. The phylogeny of chlorophyllide a oxidoreductase, which catalyzes committed steps in the synthesis of BChl a and BChl b, indicates that evolution toward BChl b production is convergent. Geranylgeranyl reductase (BchP) of H. halochloris has an insertion region in its primary structure, which could be important for its unusual sequential reduction reactions.

  相似文献   

2.
A light-harvesting-reaction center (LH1-RC) core complex has been highly purified from a thermophilic purple sulfur bacterium, Thermochromatium tepidum. The bacteriochlorophyll (BChl) a molecules in the LH1 exhibit a Qy transition at 914 nm, more than 25 nm red-shift from those of its mesophilic counterparts. The LH1-RC complex was isolated in a monomeric form as confirmed by sucrose density gradient centrifugation, blue native PAGE and size-exclusion chromatography. Four subunits (L, M, H and a tetraheme cytochrome) in RC and two polypeptides (α and β) in LH1 were identified. Spirilloxanthin was determined to be the predominant carotenoid in the core complex. The purified core complex was highly stable, no significant change in the LH1 Qy transition was observed over 10 days of incubation at room temperature in dark. Circular dichroism spectrum of the LH1 complex was characterized by low intensity and nonconservative spectral shape, implying a high symmetry of the large LH1 ring and interaction between the BChl a and carotenoid molecules. A dimeric feature of the BChl a molecules in LH1 was revealed by magnetic circular dichroism spectrum. Crystals of the core complex were obtained which diffracted X-rays to about 10 Å.  相似文献   

3.
The core light-harvesting complex (LH1) of purple sulfur photosynthetic bacterium Thermochromatium tepidum exhibits an unusual absorption maximum at 915 nm for the Q y transition, and is highly stable when copurified with reaction center (RC) in a LH1–RC complex form. In previous studies, we demonstrated that the calcium ions are involved in both the large red shift and the enhanced thermal stability, and possible Ca2+-binding sites were proposed. In this study, we further examine the putative binding sites in the LH1 polypeptides using purified chromatophores. Incubation of the chromatophores in the presence of EDTA revealed no substantial change in the absorption maximum of LH1 Q y transition, whereas further addition of detergents to the chromatophores-EDTA solution resulted in a blue-shift for the LH1 Q y peak with the final position at 892 nm. The change of the LH1 Q y peak to shorter wavelengths was relatively slow compared to that of the purified LH1–RC complex. The blue-shifted LH1 Q y transition in chromatophores can be restored to its original position by addition of Ca2+ ions. The results suggest that the Ca2+-binding site is exposed on the inner surface of chromatophores, corresponding to the C-terminal region of LH1. An Asp-rich fragment in the LH1 α-polypeptide is considered to form a crucial part of the binding network. The slow response of LH1 Q y transition upon exposure to EDTA is discussed in terms of the membrane environment in the chromatophores.  相似文献   

4.
Ma F  Kimura Y  Zhao XH  Wu YS  Wang P  Fu LM  Wang ZY  Zhang JP 《Biophysical journal》2008,95(7):3349-3357
The intact core antenna-reaction center (LH1-RC) core complex of thermophilic photosynthetic bacterium Thermochromatium (Tch.) tepidum is peculiar in its long-wavelength LH1-Qy absorption (915 nm). We have attempted comparative studies on the excitation dynamics of bacteriochlorophyll (BChl) and carotenoid (Car) between the intact core complex and the EDTA-treated one with the Qy absorption at 889 nm. For both spectral forms, the overall Car-to-BChl excitation energy transfer efficiency is determined to be ∼20%, which is considerably lower than the reported values, e.g., ∼35%, for other photosynthetic purple bacteria containing the same kind of Car (spirilloxanthin). The RC trapping time constants are found to be 50∼60 ps (170∼200 ps) for RC in open (closed) state irrespective to the spectral forms and the wavelengths of Qy excitation. Despite the low-energy LH1-Qy absorption, the RC trapping time are comparable to those reported for other photosynthetic bacteria with normal LH1-Qy absorption at 880 nm. Selective excitation to Car results in distinct differences in the Qy-bleaching dynamics between the two different spectral forms. This, together with the Car band-shift signals in response to Qy excitation, reveals the presence of two major groups of BChls in the LH1 of Tch. tepidum with a spectral heterogeneity of ∼240 cm−1, as well as an alteration in BChl-Car geometry in the 889-nm preparation with respect to the native one.  相似文献   

5.
The light-harvesting 2 complex (LH2) of the purple phototrophic bacterium Rhodobacter sphaeroides is a highly efficient, light-harvesting antenna that allows growth under a wide-range of light intensities. In order to expand the spectral range of this antenna complex, we first used a series of competition assays to measure the capacity of the non-native pigments 3-acetyl chlorophyll (Chl) a, Chl?d, Chl?f or bacteriochlorophyll (BChl) b to replace native BChl?a in the B800 binding site of LH2. We then adjusted the B800 site and systematically assessed the binding of non-native pigments. We find that Arg?10 of the LH2 β polypeptide plays a crucial role in binding specificity, by providing a hydrogen-bond to the 3-acetyl group of native and non-native pigments. Reconstituted LH2 complexes harbouring the series of (B)Chls were examined by transient absorption and steady-state fluorescence spectroscopies. Although slowed 10-fold to ~6?ps, energy transfer from Chl?a to B850 BChl?a remained highly efficient. We measured faster energy-transfer time constants for Chl?d (3.5?ps) and Chl?f (2.7?ps), which have red-shifted absorption maxima compared to Chl?a. BChl?b, red-shifted from the native BChl?a, gave extremely rapid (≤0.1?ps) transfer. These results show that modified LH2 complexes, combined with engineered (B)Chl biosynthesis pathways in vivo, have potential for retaining high efficiency whilst acquiring increased spectral range.  相似文献   

6.
Optical and structural properties of the B875 light-harvesting complex of purple bacteria were examined by measurements of low-temperature circular dichroism (CD) and excitation spectra of fluorescence polarization. In the B875 complex isolated from wild-type Rhodopseudomonas sphaeroides, fluorescence polarization increased steeply across the long-wavelength Qy bacteriochlorophyll a (BChl) absorption band at both 4 and approx. 300 K. With the native complex in the photosynthetic membranes of Rhodospirillum rubrum and Rps. sphaeroides wild-type and R26-carotenoidless strains, this significant increase in polarization from 0.12 to 0.40 was only observed at low temperature. A polarization of ?0.2 was observed upon excitation in the Qx BChl band. The results indicate that about 15% of the BChl molecules in the complex absorb at wavelengths about 12 nm longer than the other BChls. All BChls have approximately the same orientation with their Qy transition dipoles essentially parallel and their Qx transitions perpendicular to the plane of the membrane. At low temperature, energy transfer to the long-wavelength BChls is irreversible, yielding a high degree of polarization upon direct excitation, whereas at room temperature a partial depolarization of fluorescence by energy transfer between different subunits occurs in the membrane, but not in the isolated complex. CD spectra appear to reflect the two spectral forms of B875 BChl in Rps. sphaeroides membranes. They also reveal structural differences between the complexes of Rps. sphaeroides and Rhs. rubrum, in both BChl and carotenoid regions. The CD spectrum of isolated B875 indicates that the interactions between the BChls but not the carotenoids are altered upon isolation.  相似文献   

7.
John D. Bolt  Kenneth Sauer 《BBA》1981,637(2):342-347
The light-harvesting bacteriochlorophyll-protein (BChl-protein) from Rhodopseudomonas sphaeroides, R-26 mutant, exhibits a strong optical absorption peak near 850 nm (Qy band) and a weaker peak at 590 nm (Qx band). This pigment-protein appears to contain two BChl molecules per subunit, and previous circular dichroism studies indicated the presence of excitonic interactions between the BChl molecules. The complex exhibits a fluorescence maximum near 870 nm at room temperature. Excitation in the Qy region results in polarization p values that vary only from +0.12 at 820 nm to +0.14 near 900 nm. These values are appreciably smaller than that for monomeric BChl in viscous solvents (p > 0.4). By contrast, using Qx excitation the p value is ?0.25 for the BChl-protein complex, which is close to that observed for the BChl monomer. For the BChl-protein these polarization values do not change greatly at a temperature of 90 K; however, the Stokes' shift of the fluorescence emission increases significantly over that at room temperature.  相似文献   

8.
Redox-active quinones play essential roles in efficient light energy conversion in type-II reaction centers of purple phototrophic bacteria. In the light-harvesting 1 reaction center (LH1-RC) complex of purple bacteria, QB is converted to QBH2 upon light-induced reduction and QBH2 is transported to the quinone pool in the membrane through the LH1 ring. In the purple bacterium Rhodobacter sphaeroides, the C-shaped LH1 ring contains a gap for quinone transport. In contrast, the thermophilic purple bacterium Thermochromatium (Tch.) tepidum has a closed O-shaped LH1 ring that lacks a gap, and hence the mechanism of photosynthetic quinone transport is unclear. Here we detected light-induced Fourier transform infrared (FTIR) signals responsible for changes of QB and its binding site that accompany photosynthetic quinone reduction in Tch. tepidum and characterized QB and QBH2 marker bands based on their 15N- and 13C-isotopic shifts. Quinone exchanges were monitored using reconstituted photosynthetic membranes comprised of solubilized photosynthetic proteins, membrane lipids, and exogenous ubiquinone (UQ) molecules. In combination with 13C-labeling of the LH1-RC and replacement of native UQ8 by ubiquinones of different tail lengths, we demonstrated that quinone exchanges occur efficiently within the hydrophobic environment of the lipid membrane and depend on the side chain length of UQ. These results strongly indicate that unlike the process in Rba. sphaeroides, quinone transport in Tch. tepidum occurs through the size-restricted hydrophobic channels in the closed LH1 ring and are consistent with structural studies that have revealed narrow hydrophobic channels in the Tch. tepidum LH1 transmembrane region.  相似文献   

9.
Two types of peripheral light-harvesting complexes LH2 (B800–850) from photosynthetic purple bacterium Allochromatium minutissimum were studied. First type containing carotenoids was prepared from wild type cells. The other one was obtained from carotenoid depleted cells grown with diphenylamine. We have shown that under laser femtosecond excitation within absorption 1200–1500 nm wavelength range the two-photon excitation of LH2 complexes takes place. This can be observed as fluorescence of bacteriochlorophyll (BChl) spectral form B850 (BChl molecules of circular aggregate with strong exciton interaction in 850 nm spectral domain). LH2 fluorescence excitation spectra under two-photon excitation are the same for carotenoid-containing and carotenoidless preparations. In both cases the broad band with peak near 1350 (675) nm (FWHM ~ 240 (120) nm) was found. It is concluded that the broad band with peak near 1350 (675) nm in two-photon excitation spectra of LH2 complexes from Allochromatium minutissimum cannot be interpreted as two-photon excitation band of the optically forbidden S0 → S1 transition of carotenoids (rhodopin). Possible nature of this band is discussed.  相似文献   

10.
A subunit complex was formed from the core light-harvesting complex (LH1) of bacteriochlorophyll(BChl)-b-containing Rhodopseudomonas viridis. The addition of octyl glucoside to a carotenoid-depleted Rps. viridis membrane preparation resulted in a subunit complex absorbing at 895 nm, which could be quantitatively dissociated to free BChl b and then reassociated to the subunit. When carotenoid was added back, the subunit could be reassociated to LH1 with a 25% yield. Additionally, the Rps. viridis - and -polypeptides were isolated, purified, and then reconstituted with BChl b. They formed a subunit absorbing near 895 nm, similar to the subunit formed by titration of the carotenoid depleted membrane, but did not form an LH1-type complex at 1015 nm. The same results were obtained with the -polypeptide alone and BChl b. Isolated polypeptides were also tested for their interaction with BChl a. They formed subunit and LH1-type complexes similar to those formed using polypeptides isolated from BChl-a-containing bacteria but displayed 6–10 nm smaller red shifts in their long-wavelength absorption maxima. Thus, the larger red shift of BChl-b-containing Rps. viridis is not attributable solely to the protein structure. The -polypeptide of Rps. viridis differed from the other -polypeptides tested in that it could form an LH1-type complex with BChl a in the absence of the - and -polypeptides. It apparently contains the necessary information required to assemble into an LH1-type complex. When the -polypeptide was tested in reconstitution with BChl a and BChl b with the - and -polypeptides, it had no effect; its role remains undetermined.Abbreviations B820 the subunit form of the core light-harvesting complex in BChl-a-containing bacteria which has an absorption maximum at or near 820 nm - B875 the core light-harvesting complex of Rhodobacter sphaeroides which has an absorption maximum at 875 nm - B881 the core light-harvesting complex of wild-type Rhodospirillum rubrum which has an absorption maximum at 881 nm - B895 the subunit form of the core light-harvesting complex in Rps. viridis which has an absorption maximum near 888–895 nm - B1015 the core light-harvesting complex of Rps. viridis which has an absorption maximum at 1015 nm - CD circular dichroism - LH1 the core light-harvesting complex - OG n-octyl -d-glucopyranoside  相似文献   

11.
The absorbance, polarized absorbance and linear dichroism spectra of single crystals of the B800–850 light-harvesting complex from Rhodopseudomonas acidophila strain 10050 taken at room (298 K) and low (85 K) temperatures are presented. The spectra are compared and contrasted with random phase solution spectra from the same complex. The single crystal spectra display a spectral narrowing at low temperatures in the BChl Qx (550–650 nm) and carotenoid (450–550 nm) regions similar to that observed from the random phase solution. The single crystal absorption spectra in the BChl Qy (750–900 nm) region are broader than the solution spectra and remain broad as the temperature is lowered. It is suggested that this broadening is the result of specific exciton interactions between the BChl chromophore Qy transition dipoles and is a molecular feature which occurs only in the crystalline complex.  相似文献   

12.
13.
《BBA》1985,807(3):278-284
An antenna fraction designated B800/1020 according to its near-infrared absorption maxima has been isolated from the bacteriochlorophyll b-containing photosynthetic bacterium, Ectothiorhodospira halochloris. It contains five polypeptides (approx. 4.5, 6.0, 6.5, 15.5 and 35 kDa), at least five strongly interacting BChl b chromophores and no carotenoids. Energy is transferred from the chromophores absorbing around 800 nm to the ones absorbing at 1020 nm. The B800/1020 fraction as well as chromatophores, sphaeroplasts or whole bacteria are reversibly transformed with acid to form B800/960 with a pK value of approx. 6.3. Circular dichroism and low-temperature fluorescence data of the ‘low-pH form’ indicate only little structural rearrangement of the chromophores and a retention of the energy transfer.  相似文献   

14.
The light-harvesting core complex of the thermophilic filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii is intrinsic to the cytoplasmic membrane and intimately bound to the reaction center (RC). Using ultrafast transient absorption and time-resolved fluorescence spectroscopy with selective excitation, energy transfer, and trapping dynamics in the core complex have been investigated at room temperature in both open and closed RCs. Results presented in this report revealed that the excited energy transfer from the BChl 800 to the BChl 880 band of the antenna takes about 2?ps independent of the trapping by the RC. The time constants for excitation quenching in the core antenna BChl 880 by open and closed RCs were found to be 60 and 210?ps, respectively. Assuming that the light harvesting complex is generally similar to LH1 of purple bacteria, the possible structural and functional aspects of this unique antenna complex are discussed. The results show that the core complex of Roseiflexus castenholzii contains characteristics of both purple bacteria and Chloroflexus aurantiacus.  相似文献   

15.
In chromatophores from Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata, the Qx band(s) of the light-harvesting bacteriochlorophyll (BChl) (λmax ~590 nm) shifts to the red in response to a light-induced membrane potential, as indicated by the characteristics of the light-minus-dark difference spectrum. In green strains, containing light-harvesting complexes I and II, and one or more of neurosporene, methoxyneurosporene, and hydroxyneurosporene as carotenoids, the absorption changes due to the BChl and carotenoid responses to membrane potential in the spectral region 540–610 nm are comparable in magnitude and overlap with cytochrome and reaction center absorption changes in coupled chromatophores. In strains lacking carotenoid and light-harvesting complex II, the BChl shift absorption change is relatively smaller, due in part to the lower BChl/reaction center ratio.In the carotenoid-containing strains, the peak-to-trough absorption change in the BChl difference spectrum is 5–8% of the peak-to-trough change due to the shift of the longest-wavelength carotenoid band, although the absorption of the BChl band is 25–40% of that of the carotenoid band. The responding BChl band(s) does not appear to be significantly red-shifted in the dark in comparison to the total BChl Qx band absorption.  相似文献   

16.
We have studied the pigment arrangement in purified cytoplasmic membranes of the thermophilic green bacterium Chloroflexus aurantiacus. The membranes contain 30–35 antenna bacteriochlorophyll a molecules per reaction center; these are organized in the B808–866 light-harvesting complex, together with carotenoids in a 2:1 molar ratio. Measurements of linear dichroism in a pressed polyacrylamide gel permitted the accurate determination of the orientation of the optical transition dipole moments with respect to the membrane plane. Combination of linear dichroism and low temperature fluorescence polarization data shows that the Qy transitions of the BChl 866 molecules all lie almost perfectly parallel to the membrane plane, but have no preferred orientation within the plane. The BChl 808 Qy transitions make an average angle of about 44° with this plane. This demonstrates that there are clear structural differences between the B808–866 complex of C. aurantiacus and the B800–850 complex of purple bacteria. Excitation energy transfer from carotenoid to BChl a proceeds with about 40% efficiency, while the efficiency of energy transfer from BChl 808 to BChl 866 approaches 100%. From the minimal energy transfer rate between the two spectral forms of BChl a, obtained by analysis of low temperature fluorescence emission spectra, a maximal distance between BChl 808 and BChl 866 of 23 was derived.Abbreviations BChl bacteriochlorophyll - BPheo bacteriopheophytin - CD circular dichroism - LD linear dichroism - Tris Tris(hydroxymethyl)aminomethane  相似文献   

17.
Stark spectroscopy is a powerful technique to investigate the electrostatic interactions between pigments as well as between the pigments and the proteins in photosynthetic pigment–protein complexes. In this study, Stark spectroscopy has been used to determine two nonlinear optical parameters (polarizability change Tr(Δα) and static dipole-moment change |Δμ| upon photoexcitation) of isolated and of reconstituted LH1 complexes from the purple photosynthetic bacterium, Rhodospirillum (Rs.) rubrum. The integral LH1 complex was prepared from Rs. rubrum S1, while the reconstituted complex was assembled by addition of purified carotenoid (all-trans-spirilloxanthin) to the monomeric subunit of LH1 from Rs. rubrum S1. The reconstituted LH1 complex has its Qy absorption maximum at 878 nm. This is shifted to the blue by 3 nm in comparison to the isolated LH1 complex. The energy transfer efficiency from carotenoid to bacteriochlorophyll a (BChl a), which was determined by fluorescence excitation spectroscopy of the reconstituted LH1 complex, is increased to 40%, while the efficiency in the isolated LH1 complex is only 28%. Based on the differences in the values of Tr(Δα) and |Δμ|, between these two preparations, we can calculate the change in the electric field around the BChl a molecules in the two situations to be E Δ ≈ 3.4 × 105 [V/cm]. This change can explain the 3 nm wavelength shift of the Qy absorption band in the reconstituted LH1 complex.  相似文献   

18.
Light-harvesting complex 2 (LH2) from the semi-aerobically grown purple phototrophic bacterium Rhodobacter sphaeroides was studied using optical (static and time-resolved) and resonance Raman spectroscopies. This antenna complex comprises bacteriochlorophyll (BChl) a and the carotenoid spheroidenone, a ketolated derivative of spheroidene. The results indicate that the spheroidenone-LH2 complex contains two spectral forms of the carotenoid: (1) a minor, “blue” form with an S2 (11B u + ) spectral origin band at 522 nm, shifted from the position in organic media simply by the high polarizability of the binding site, and (2) the major, “red” form with the origin band at 562 nm that is associated with a pool of pigments that more strongly interact with protein residues, most likely via hydrogen bonding. Application of targeted modeling of excited-state decay pathways after carotenoid excitation suggests that the high (92%) carotenoid-to-BChl energy transfer efficiency in this LH2 system, relative to LH2 complexes binding carotenoids with comparable double-bond conjugation lengths, derives mainly from resonance energy transfer from spheroidenone S2 (11B u + ) state to BChl a via the Qx state of the latter, accounting for 60% of the total transfer. The elevated S2 (11B u + ) → Qx transfer efficiency is apparently associated with substantially decreased energy gap (increased spectral overlap) between the virtual S2 (11B u + ) → S0 (11A g ? ) carotenoid emission and Qx absorption of BChl a. This reduced energetic gap is the ultimate consequence of strong carotenoid–protein interactions, including the inferred hydrogen bonding.  相似文献   

19.
The mutant lacking enzymes BciA and BchU, that catalyzed reduction of the C8-vinyl group and methylation at the C20 position of bacteriochlorophyll (BChl) c, respectively, in the green sulfur bacterium Chlorobaculum tepidum, were constructed. This mutant accumulated C8-vinyl-BChl d derivatives, and a molecular structure of the major pigment was fully characterized by its NMR, mass, and circular dichroism spectra, as well as by chemical modification: (31 R)-8-vinyl-12-ethyl-(R[V,E])BChl d was confirmed as a new BChl d species in the cells. In vitro chlorosome-like self-aggregates of this pigment were prepared in an aqueous micellar solution, and formed more rapidly than those of (31 R)-8,12-diethyl-(R[E,E])BChl d isolated from the green sulfur bacterium Chlorobaculum parvum NCIB8327d synthesizing BChl d homologs. Their red-shifted Q y absorption bands were almost the same at 761 nm, and the value was larger than those of in vitro self-aggregates of R[E,E]BChl c (737 nm) and R[V,E]BChl c (726 nm), while the monomeric states of the former gave Q y bands at shorter wavelengths than those of the latter. Red shifts by self-aggregation of the two BChl d species were estimated to be 110 nm and much larger than those by BChls c (75 nm for [E,E] and 64 nm for [V,E]).  相似文献   

20.
《FEBS letters》1987,223(1):161-164
The orientation of the long-wavelength (Qy) transition moments of the antenna bacterioviridin (BVr) was examined in living cells of Chlorobium limicola. Previous linear dichroism studies [(1986) FEBS Lett. 199, 234–236] indicated that in each individual chromatophore of C. limicola the Qy, transition moment vectors of the whole chlorosome BVr are essentially parallel to each other and are practically ideally oriented along the long axis of the chlorosome. We measured the picosecond polarized fluorescence decay kinetics for antenna bacteriochlorophyll (BChl) emissions upon selective excitation with polarized light of the Qy, transition of BVr. The polarization (p) of the BVr fluorescence is measured to be constant during the BVr excited-state lifetime and to be equal to the limiting value of p achieved in monomeric BChl: P = + 0.42 ± 0.02. The results indicate convincingly that the excitation energy transfer within chlorosomes of C. limicola cells takes place between chromophores (or their coupled associates) with parallel transition moment vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号