首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解释生物进化各种过程,在一定的条件下,通过定向选择推导出的微分方程可以研究两个共享同一资源但同时又互不杂交的同类群体的进化过程。虽然人们的直觉是大群体往往能占有生存的良机,但是这种认识是片面的。通过微分方程的各种模拟结果可以得出结论:一方面在简单的适应面上,即当一个群体发生有利突变而产生具有优势的后代,那么无论初始条件如何这个群体将最后侵蚀掉另一群体。大群体因有利突变等概率产生而有更大的几率获得生存的优势。另一方面在略微复杂的适应面上,如果两个群体都发生有利突变只是发生的时间不同。在相同的境遇下,小群体相比大群体反而有更大的可能存活下来而不被灭绝。  相似文献   

2.
Multilevel societies are unique in their ability to facilitate the maintenance of strong and consistent social bonds among some individuals while allowing separation among others, which may be especially important when social and sexual bonds carry significant and reliable benefits to individuals within social groups. Here we examine the importance of social and sexual bonds in the multilevel society of hamadryas baboons (Papio hamadryas) and apply these principles to social evolution in Plio-Pleistocene hominins. The behavior, adaptations, and socioecology of baboons (Papio spp.) have long been recognized as providing an important comparative sample to elucidate the processes of human evolution, and the social system of hamadryas baboons in particular shares even more similarities with humans than that of other baboons. Here we draw parallels between processes during the evolution of hamadryas social organization and those characterizing late Pliocene or early Pleistocene hominins, most likely Homo erectus. The higher costs of reproduction faced by female Homo erectus, exacerbated by an increased reliance on difficult to acquire, nutrient-dense foods, are commonly thought to have been alleviated by a strengthening of male–female bonds (via male provisioning and the evolution of monogamy) or by the assistance of older, postreproductive females (via grandmothering). We suggest that both of these social arrangements could have been present in Plio-Pleistocene hominins if we assume the development of a multilevel society such as that in hamadryas baboons. The evolution of a multilevel society thus underlies the adaptive potential for the complexity that we see in modern human social organization.  相似文献   

3.
Hydrophobicity as an Adhesion Mechanism of Benthic Cyanobacteria   总被引:16,自引:8,他引:8       下载免费PDF全文
The capacity of benthic cyanobacteria to adhere to solid substrates was examined in terms of their cell surface properties. By using a biphasic water-hydrocarbon test system, it was demonstrated that benthic cyanobacteria from divergent habitats were all hydrophobic, whereas all the planktonic cyanobacteria tested were hydrophilic. Divalent cations were found more efficient than monovalent cations in effecting the expression of hydrophobicity. Mechanical shearing of the cell surface, as well as chemical removal of the cell wall, demonstrated that the hydrophobicity was confined to the outer surface layers. The hydrophobic sites were distributed along the whole length of the cyanobacterial filament. Hydrophilic hormogonia of benthic cyanobacteria became hydrophobic within 48 h when grown in the light; chloramphenicol, 3(3,4-dichlorophenyl)1,1 dimethylurea, or incubation in the dark prevented this transition. Hydrophobicity of Phormidium filaments was masked in late stationary phase; this effect was removed by gentle washing.  相似文献   

4.
Chemokines display considerable promiscuity with multiple ligands and receptors shared in common, a phenomenon that is thought to underlie their biochemical “redundancy.” Their receptors are part of a larger seven-transmembrane receptor superfamily, commonly referred to as G protein-coupled receptors, which have been demonstrated to be able to signal with different efficacies to their multiple downstream signaling pathways, a phenomenon referred to as biased agonism. Biased agonism has been primarily reported as a phenomenon of synthetic ligands, and the biologic prevalence and importance of such signaling are unclear. Here, to assess the presence of biased agonism that may underlie differential signaling by chemokines targeting the same receptor, we performed a detailed pharmacologic analysis of a set of chemokine receptors with multiple endogenous ligands using assays for G protein signaling, β-arrestin recruitment, and receptor internalization. We found that chemokines targeting the same receptor can display marked differences in their efficacies for G protein- or β-arrestin-mediated signaling or receptor internalization. This ligand bias correlates with changes in leukocyte migration, consistent with different mechanisms underlying the signaling downstream of these receptors induced by their ligands. These findings demonstrate that biased agonism is a common and likely evolutionarily conserved biological mechanism for generating qualitatively distinct patterns of signaling via the same receptor in response to different endogenous ligands.  相似文献   

5.
The formation of neuronal synapses is a finely organized process that involves the presynaptic assembly of the machinery responsible for neurotransmitter release and the postsynaptic recruitment of neurotransmitter receptors and scaffold proteins to the postsynaptic density (PSD). The molecular cues guiding the establishment of synaptic connections are now beginning to be identified. Recent evidences indicate that cell adhesion molecules (CAMs) participate prominently in the key steps of synapse formation, inducing trans-synaptic adhesion and promoting a precise alignment of pre- and postsynaptic terminals. This addendum describes a new mechanism of cell-cell interaction that combines features of both diffusible and membrane-bound synaptogenic factors. It particularly points out the key role played by GDNF triggering trans-homophilic binding between GFRα1 molecules and cell adhesion between GFRα1-expressing cells. In this model GFRα1 functions as a ligand-induced cell adhesion molecule (LICAM) to establish precise synaptic contacts and promote the assembly of presynaptic terminals. In this overview, I summarize the current concepts of synapse formation in the limelight of this new mechanism of ligand-induced cell adhesion.  相似文献   

6.
7.
ABSTRACT. Developmental processes in multicellular organisms require structural elements, such as adhesion molecules, to stabilize cells at functional positions. In vertebrates, a series of extracellular matrix proteins, e.g. fibronectin and laminin are involved in cell adhesion. These proteins contain Arg-Gly-Asp [RGD] at their binding sites. Here we show that at concentrations above 2 mM the peptide GRG D SPK, comprising the tripeptide RGD (Arg-Gly-Asp), prevents the adhesiveness of cells of the marine amoeba Neopar-amoeba aestuarina. In addition, elevated levels of GRG D SPK cause cells to alter their shapes from those with digitiform subpseudopodia to rounded cells with small lobed pseudopodia. These cells detach from the substratum. These results are specific for the RGD sequence, because incubation in GRG E SPK solution at the same concentrations had no effect on cell attachment or structure. From these data we suggest that the structural adhesion molecules identified in vertebrates shows amino acid homologies with those found in unicellular protozoa.  相似文献   

8.
9.

Background

Efficient cell movement requires the dynamic regulation of focal adhesion (FA) formation and turnover. FAs are integrin-associated sites of cell attachment and establish linkages to the cellular actin cytoskeleton. Cells without focal adhesion kinase (FAK), an integrin-activated tyrosine kinase, exhibit defects in FA turnover and cell motility. Cortactin is an actin binding adaptor protein that can influence FA dynamics. FAK and cortactin interact, but the cellular role of this complex remains unclear.

Principal Findings

Using FAK-null fibroblasts stably reconstituted with green fluorescent protein (GFP) tagged FAK constructs, we find that FAK activity and FAK C-terminal proline-rich region 2 (PRR2) and PRR3 are required for FA turnover and cell motility. Cortactin binds directly to FAK PRR2 and PRR3 sites via its SH3 domain and cortactin expression is important in promoting FA turnover and GFP-FAK release from FAs. FAK-cortactin binding is negatively-regulated by FAK activity and associated with cortactin tyrosine phosphorylation. FAK directly phosphorylates cortactin at Y421 and Y466 and over-expression of cortactin Y421, Y466, and Y482 mutated to phenylalanine (3YF) prevented FAK-enhanced FA turnover and cell motility. However, phospho-mimetic cortactin mutated to glutamic acid (3YE) did not affect FA dynamics and did not rescue FA turnover defects in cells with inhibited FAK activity or with PRR2-mutated FAK that does not bind cortactin.

Conclusions

Our results support a model whereby FAK-mediated FA remodeling may occur through the formation of a FAK-cortactin signaling complex. This involves a cycle of cortactin binding to FAK, cortactin tyrosine phosphorylation, and subsequent cortactin-FAK dissociation accompanied by FA turnover and cell movement.  相似文献   

10.
One of the most frequently given reasons for relinquishing a companion animal to an animal shelter is that the person or family is moving. Telephone interviews conducted with 57 caregivers who relinquished animal companions to a shelter in the midwestern United States covered details of the move, characteristics both of the caregivers and the animals, and efforts to avoid relinquishment. A human-nonhuman animal bonding scale also was administered. Although some participants had additional reasons for relinquishment, the majority had given up their pets solely because they were moving. Most had relatively low income, were moving for employment reasons, and were renting their homes. Landlord restrictions were an important factor in relinquishment. High scores on the bonding scale and spontaneous expressions of discomfort and sorrow suggest that external pressures overrode attachment to the animal and the pain of relinquishment.  相似文献   

11.
12.
Convergent extension, the simultaneous extension and narrowing of tissues, is a crucial event in the formation of the main body axis during embryonic development. It involves processes on multiple scales: the sub-cellular, cellular and tissue level, which interact via explicit or intrinsic feedback mechanisms. Computational modelling studies play an important role in unravelling the multiscale feedbacks underlying convergent extension. Convergent extension usually operates in tissue which has been patterned or is currently being patterned into distinct domains of gene expression. How such tissue patterns are maintained during the large scale tissue movements of convergent extension has thus far not been investigated. Intriguingly, experimental data indicate that in certain cases these tissue patterns may drive convergent extension rather than requiring safeguarding against convergent extension. Here we use a 2D Cellular Potts Model (CPM) of a tissue prepatterned into segments, to show that convergent extension tends to disrupt this pre-existing segmental pattern. However, when cells preferentially adhere to cells of the same segment type, segment integrity is maintained without any reduction in tissue extension. Strikingly, we demonstrate that this segment-specific adhesion is by itself sufficient to drive convergent extension. Convergent extension is enhanced when we endow our in silico cells with persistence of motion, which in vivo would naturally follow from cytoskeletal dynamics. Finally, we extend our model to confirm the generality of our results. We demonstrate a similar effect of differential adhesion on convergent extension in tissues that can only extend in a single direction (as often occurs due to the inertia of the head region of the embryo), and in tissues prepatterned into a sequence of domains resulting in two opposing adhesive gradients, rather than alternating segments.  相似文献   

13.
14.
15.
The tomato pathotype of Alternaria alternata produces host-specific AAL toxin and causes Alternaria stem canker on tomato. A polyketide synthetase (PKS) gene, ALT1, which is involved in AAL toxin biosynthesis, resides on a 1.0-Mb conditionally dispensable chromosome (CDC) found only in the pathogenic and AAL toxin-producing strains. Genomic sequences of ALT1 and another PKS gene, both of which reside on the CDC in the tomato pathotype strains, were compared to those of tomato pathotype strains collected worldwide. This revealed that the sequences of both CDC genes were identical among five A. alternata tomato pathotype strains having different geographical origins. On the other hand, the sequences of other genes located on chromosomes other than the CDC are not identical in each strain, indicating that the origin of the CDC might be different from that of other chromosomes in the tomato pathotype. Telomere fingerprinting and restriction fragment length polymorphism analyses of the A. alternata strains also indicated that the CDCs in the tomato pathotype strains were identical, although the genetic backgrounds of the strains differed. A hybrid strain between two different pathotypes was shown to harbor the CDCs derived from both parental strains with an expanded range of pathogenicity, indicating that CDCs can be transmitted from one strain to another and stably maintained in the new genome. We propose a hypothesis whereby the ability to produce AAL toxin and to infect a plant could potentially be distributed among A. alternata strains by horizontal transfer of an entire pathogenicity chromosome. This could provide a possible mechanism by which new pathogens arise in nature.Fungi produce a huge variety of secondary metabolites. Some plant-pathogenic fungi, especially necrotrophic pathogens that kill plant cells during invasion, produce phytotoxic metabolites to impair host tissue functions (20, 30, 42, 47). Phytotoxins produced by fungal plant pathogens are generally low-molecular-weight secondary metabolites that exert toxic effects on host plants. Among these phytotoxins, host-specific toxins (HSTs) are critical determinants of pathogenicity or virulence in several plant-pathogen interactions (13, 30, 33, 40, 42, 47, 49).Recent advances in molecular biological techniques for fungi have led to the identification of fungal genes involved in pathogenesis, as exemplified by those used in the biosynthesis of toxic secondary metabolites, such as HSTs. Genes involved in the biosynthesis of secondary metabolites are typically clustered in filamentous fungi, including plant pathogens (20, 24, 44). The origins and evolutionary processes of these gene clusters, however, are largely unknown. Analysis of the arrangement and sequences of genes in the clusters would shed light on how the clusters themselves and their ability to produce toxic secondary metabolites evolved (20, 24, 44).The involvement of horizontal gene transfer (HGT) in the evolution of fungal secondary-metabolite gene clusters has been discussed (34, 44). HGT events are well known in prokaryotes (21, 29), and the genomic regions that have undergone HGT are referred to as pathogenicity or genomic islands (7). In prokaryotes, the mechanisms of HGT are also associated with conjugation, transformation, and transduction (21, 29). Although these transfer mechanisms are generally unknown in eukaryotes such as fungi, interspecific transfer of a virulence gene encoding the production of a critical toxin has been reported in Pyrenophora tritici-repentis (14). There is also clear evidence of recent lateral gene transfer of the ToxA gene from Stagonospora nodorum to P. tritici-repentis (14, 30).In Alternaria alternata plant pathogens (37), we have shown that all strains of the A. alternata pathotypes harbor small extra chromosomes of less than 1.7 Mb, whereas nonpathogenic isolates do not have these small chromosomes (5). A cyclic peptide synthetase gene, AMT, which is involved in host-specific AM toxin biosynthesis of the apple pathotype of A. alternata, was located on a small chromosome of 1.1 to 1.7 Mb, depending on the strain (22, 23). The AF toxin biosynthesis gene cluster was also present on a single small chromosome of 1.05 Mb in the strawberry pathotype of A. alternata (18). Based on biological and pathological observations, those small chromosomes were regarded as supernumerary chromosomes, or conditionally dispensable chromosomes (CDCs) (10, 18, 22). Fungal supernumerary chromosomes, which are not important for normal growth but confer advantages for colonizing an ecological niche, such as infecting host plants, are regarded as CDCs (21). The functions and pathological roles of CDCs have been studied in the pea pathogen Nectria haematococca (11, 17, 25, 32, 43, 46).The origin and evolution of CDCs have been intriguing issues in the study of plant-microbe interactions. The supernumerary chromosomes of certain strains of N. haematococca have been suggested to have a different evolutionary history than essential chromosomes (ECs) in the same genome, and they might have been introduced into the genome by horizontal transfer from another strain (10, 12, 36). In Colletotrichum gloeosporioides, the 2-Mb supernumerary chromosome was transferred from a biotype A strain to a vegetative incompatible biotype B strain (19, 31). Transfer of the chromosome, however, did not affect the pathogenicity of the recipient fungus, perhaps because it did not harbor pathogenicity genes (19, 31). These results suggest that supernumerary chromosomes of fungi might have the capacity for horizontal transfer across an incompatibility barrier between two distinct strains.AAL toxins are HSTs produced by the tomato pathotype of A. alternata (synonym A. alternata f. sp. lycopersici, synonym Alternaria arborescens), the causal agent of Alternaria stem canker disease in tomatoes, which causes severe necrosis of susceptible tomato cultivars (15, 26, 35). AAL toxins and fumonisins of the maize pathogen Gibberella moniliformis are structurally related to sphinganine and termed sphinganine-analogue mycotoxins. AAL toxins and fumonisins are sphinganine-analogue mycotoxins, which are toxic to some plant species and mammalian cells (16, 48). They cause apoptosis in susceptible tomato cells and mammalian cells by inhibiting ceramide biosynthesis (9, 41, 45). In the tomato pathotype of A. alternata-tomato interactions, a major factor in pathogenicity is the production of host-specific AAL toxins capable of inducing cell death only in susceptible cultivars (3, 9, 48).In this study, we describe evidence showing that the ability to produce the host-specific AAL toxin and to infect host tomato plants could potentially be distributed among a population of strains of the A. alternata tomato pathotype by horizontal transfer of an entire pathogenicity chromosome of the pathogen.  相似文献   

16.
哺乳动物的单配制通常被认为是社会性单配制,它不是单纯地由性行为来决定,而是由诸多因素,包括长期的pair bond、夫妻双方共同抚育后代、免近亲交配以及雌雄两性相似等来决定的。在这篇综述中,我们论述了如何以啮齿类田鼠属(Microtus)为模型,通过比较研究来帮助我们理解社会性单配制的进化以及其神经调控机制。对田鼠属的研究不仅证实了单配制起源于艰苦的生存条件的假说,而且还证实了雌性性选择可能有利于维持单配制。不仅如此,哺乳动物单配制的进化还需要雄性的prosocial行为的不断强化。例如,亲近行为可以促进pairbond的形成并强化雄性对后代的哺育行为,而这种强化则来源于神经多肽催产素(OT)和加压素(AVP)与类固醇类激素的相互作用。催产素和加压素调控pairbond和双亲哺育行为的表达,而单配制和多配制田鼠的催产素和加压素受体在脑内的分布有显的不同。比较研究揭示了小型田鼠单配制的调控机制,而种内差异和行为上的可塑性则有助于我们进一步理解这种机制。比如,在某些条件下,多配制的草原田鼠(Microtus pennsylvanicu)的雄性个体具有哺育后代的行为。尽管草原田鼠的加压素Vla受体在脑内的分布与其他多配制的田鼠相似,但是如果脑室注射加压素,仍可以诱发其哺育后代的行为。同样是单配制的橙腹田鼠(Microtus ochrogaster),生活在:Illnois的显示出高水平的prosocial行为,而生活在Kansas的则表现出较低水平的社会性行为。即使两个种群的催产素或加压素Vla受体在脑内的分布相同,它们的雌激素受体表达水平显不同,这在雄性个体表现尤其明显。与Kansas的雄性个体相比,在终纹床核(bed rucleus of the stria tenninalis)和杏仁核中区(medial amygdala)这两个调控亲近行为和攻击行为的脑区,Illinois的雄性个体的α雌激素受体的水平要低得多。这些研究表明对雌激素的低敏感程度有利于高水平地表达prosocial行为并降低特定类型的攻击行为。  相似文献   

17.
There are many situations where relatives interact while at the same time there is genetic polymorphism in traits influencing survival and reproduction. Examples include cheater-cooperator polymorphism and polymorphic microbial pathogens. Environmental heterogeneity, favoring different traits in nearby habitats, with dispersal between them, is one general reason to expect polymorphism. Currently, there is no formal framework of social evolution that encompasses genetic polymorphism. We develop such a framework, thus integrating theories of social evolution into the evolutionary ecology of heterogeneous environments. We allow for adaptively maintained genetic polymorphism by applying the concept of genetic cues. We analyze a model of social evolution in a two-habitat situation with limited dispersal between habitats, in which the average relatedness at the time of helping and other benefits of helping can differ between habitats. An important result from the analysis is that alleles at a polymorphic locus play the role of genetic cues, in the sense that the presence of a cue allele contains statistical information for an organism about its current environment, including information about relatedness. We show that epistatic modifiers of the cue polymorphism can evolve to make optimal use of the information in the genetic cue, in analogy with a Bayesian decision maker. Another important result is that the genetic linkage between a cue locus and modifier loci influences the evolutionary interest of modifiers, with tighter linkage leading to greater divergence between social traits induced by different cue alleles, and this can be understood in terms of genetic conflict.  相似文献   

18.
Clathrin-dependent endocytosis is a major route for the cellular import of macromolecules and occurs at the interface between the cell and its surroundings. However, little is known about the influences of cell–substrate attachment in clathrin-coated vesicle formation. Using biochemical and imaging-based methods, we find that cell–substrate adhesion reduces the rate of endocytosis. Clathrin-coated pits (CCPs) in proximity to substrate contacts exhibit slower dynamics in comparison to CCPs found more distant from adhesions. Direct manipulation of the extracellular matrix (ECM) to modulate adhesion demonstrates that tight adhesion dramatically reduces clathrin-dependent endocytosis and extends the lifetimes of clathrin structures. This reduction is in part mediated by integrin-matrix engagement. In addition, we demonstrate that actin cytoskeletal dynamics are differentially required for efficient endocytosis, with a stronger requirement for actin polymerization in areas of adhesion. Together, these results reveal that cell–substrate adhesion regulates clathrin-dependent endocytosis and suggests that actin assembly facilitates vesicle formation at sites of adhesion.  相似文献   

19.
Aeroalgal sampling at short height (2.5 m) over natural aquatic and terrestrial algal sources revealed that despite of being similar in size (<1 mm), algal groups vary in their atmospheric abundance. Cyanobacteria were the most abundant, while chlorophytes and bacillariophytes though present, but rare. Statistical analysis (Akaike Information Criterion) showed that climatic factors (temperature, relative humidity, rainfall, wind velocity and sunshine hours) acted in concert, and mainly affected the release and subsequent vertical movement (aerosolization) of algae from natural sources. Variation in aerosolization may affect the atmospheric abundance of algae. These findings have important implication as dispersal limitation may influence the biogeography and biodiversity of microbial algae.  相似文献   

20.
Synaptotagmin I (Syt I) is a vesicle-localized protein implicated in sensing the calcium influx that triggers fast synchronous release of neurotransmitter. How Syt I utilizes its two C2 domains to integrate signals and mediate neurotransmission has continued to be a controversial area of research, though prevalent hypotheses favor independent function. Using differential scanning calorimetry and fluorescence lifetime spectroscopy in a thermodynamic denaturation approach, we tested an alternative hypothesis in which both domains interact to cooperatively disseminate binding information. The free energy of stability was determined for C2A, C2B, and C2AB constructs by globally fitting both methods to a two-state model of unfolding. By comparing the additive free energies of C2A and C2B with C2AB, we identified a negative coupling interaction between the C2 domains of Syt I. This interaction not only provides a mechanistic means for propagating signals, but also a possible means for coordinating the molecular events of neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号