共查询到20条相似文献,搜索用时 15 毫秒
1.
Overexpression of Aurora-A kinase promotes tumor cell proliferation and inhibits apoptosis in esophageal squamous cell carcinoma cell line 总被引:8,自引:0,他引:8
Attrora-A kinase, a serine/threonine protein kinase, is a potential oncogene. Amplification and overexpression of Aurora-A have been found in several types of human tumors, including esophageal squamous cell carcinoma (ESCC). It has been demonstrated that cells overexpressing Attrora-A are more resistant to cisplatin-induced apoptosis. However, the molecular mechanisms mediating these effects remain largely unknown. In this report, we showed that overexpression of Attrora-A through stable transfection of pEGFP-Aurora-A in human ESCC KYSE150 cells significantly promoted cell proliferation and inhibited cisplatin- or UV irradiation-induced apoptosis. Cleavages of caspase-3 and poly (ADPribose) polymerase (PARP) in Attrora-A overexpressing cells were substantially reduced after cisplatin or UV treatment. Furthermore, we found that silencing of endogenous Aurora-A kinase with siRNA substantially enhanced sensitivity to cisplatin- or UV-induced apoptosis in human ESCC EC9706 cells. In parallel, overexpression of Aurora-A potently upregulated the expression of Bcl-2. Moreover, the knockdown of Bcl-2 by siRNA abrogated the Aurora-A's effect on inhibiting apoptosis. Taken together, these data provide evidence that Aurora-A overexpression promoting cell proliferation and inhibiting apoptosis, suggesting a novel mechanism that is closely related to malignant phenotype and anti-cancer drugs resistance of ESCC cells. 相似文献
2.
Yan Zhang Li Zhang Ruimin Wang Bin Wang Peiyan Hua Jindong Li 《Journal of cellular biochemistry》2019,120(10):17566-17572
Erbb4-IR is a recently identified lncRNA with pivotal functions in renal injury. The present study investigated the roles of Erbb4-IR in esophageal squamous cell carcinoma (ESCC). It was observed that Erbb4-IR was upregulated in tumor tissues of patients with ESCC. Plasma levels of Erbb4-IR in patients with ESCC were positively correlated with expression levels of Erbb4-IR in tumor tissues. MicroRNA-145 (miR-145) was downregulated in tumor tissues and inversely correlated with Erbb4-IR only in tumor tissues. Erbb4-IR overexpression led to downregulated miR-145, and increased rates of ECSS cell proliferation and decreased rates of ECSS cell apoptosis. Overexpression of miR-145 showed no significant effects on Erbb4-IR expression, but played an opposite role on cancer cell proliferation and apoptosis. In addition, miR-145 overexpression attenuated the effects of Erbb4-IR overexpression. Therefore, lncRNA Erbb4-IR may promote ESCC by downregulating miR-145. 相似文献
3.
4.
Ying-Ray Lee Wei-Ching Wu Wen-Tsai Ji Jeff Yi-Fu Chen Ya-Ping Cheng Ming-Ko Chiang Hau-Ren Chen 《Journal of biomedical science》2012,19(1):9
Background
The effective therapies for oral cancer patients of stage III and IV are generally surgical excision and radiation combined with adjuvant chemotherapy using 5-Fu and Cisplatin. However, the five-year survival rate is still less than 30% in Taiwan. Therefore, evaluation of effective drugs for oral cancer treatment is an important issue. Many studies indicated that aurora kinases (A, B and C) were potential targets for cancer therapies. Reversine was proved to be a novel aurora kinases inhibitor with lower toxicity recently. In this study, the potentiality for reversine as an anticancer agent in oral squamous cell carcinoma (OSCC) was evaluated.Methods
Effects of reversine on cell growth, cell cycle progress, apoptosis, and autophagy were evaluated mainly by cell counting, flow cytometry, immunoblot, and immunofluorescence.Results
The results demonstrated that reversine significantly suppressed the proliferation of two OSCC cell lines (OC2 and OCSL) and markedly rendered cell cycle arrest at G2/M stage. Reversine also induced cell death via both caspase-dependent and -independent apoptosis. In addition, reversine could inhibit Akt/mTORC1 signaling pathway, accounting for its ability to induce autophagy.Conclusions
Taken together, reversine suppresses growth of OSCC via multiple mechanisms, which may be a unique advantage for developing novel therapeutic regimens for treatment of oral cancer in the future. 相似文献5.
IGHMBP2(Immunoglobulin mu binding protein 2)基因编码一种解旋酶,参与DNA的复制和修复,并且作为转录调节因子在基因转录中发挥重要作用。IGHMBP2基因定位于11q13.2,该染色体区段在食管鳞癌中扩增频率较高。为了探讨IGHMBP2基因在食管鳞癌中的扩增情况及其在食管鳞癌中的作用,文章对本实验室前期报道的59例食管鳞癌原发肿瘤array-CGH数据进行分析,结果显示IGHMBP2基因扩增频率为28.9%(17/59)。进一步利用荧光原位杂交(FISH)和Western blot技术,发现食管鳞癌细胞系KYSE30、KYSE180、KYSE510和KYSE150中存在IGHMBP2基因扩增/增益以及蛋白高表达。敲降IGHMBP2后,KYSE30和KYSE150细胞的侵袭迁移能力明显降低(P<0.001),侵袭迁移相关蛋白E-cadherin的表达水平升高;敲降后转染IGHMBP2质粒,回复其蛋白表达后,细胞的侵袭迁移能力又得以恢复(P<0.01)。上述结果表明,IGHMBP2过表达可能通过降低E-cadherin的表达从而增强食管鳞癌细胞的侵袭迁移能力。 相似文献
6.
Qiancheng Jing Guo Li Xiyu Chen Chao Liu Shanhong Lu Hua Zheng Huiling Ma Yuexiang Qin Diekuo Zhang Shuiting Zhang Shuling Ren Donghai Huang Pingqing Tan Jie Chen Yuanzheng Qiu Yong Liu 《Journal of cellular and molecular medicine》2019,23(7):4711-4722
The canonical Wnt/β‐catenin signalling pathway and autophagy play critical roles in cancer progression. However, the role of Wnt‐mediated autophagy in cancer radioresistance remains unclear. In this study, we found that irradiation activated the Wnt/β‐catenin and autophagic signalling pathways in squamous cell carcinoma of the head and neck (SCCHN). Wnt3a is a classical ligand that activated the Wnt/β‐catenin signalling pathway, induced autophagy and decreased the sensitivity of SCCHN to irradiation both in vitro and in vivo. Further mechanistic analysis revealed that Wnt3a promoted SCCHN radioresistance via protective autophagy. Finally, expression of the Wnt3a protein was elevated in both SCCHN tissues and patients' serum. Patients showing high expression of Wnt3a displayed a worse prognosis. Taken together, our study indicates that both the canonical Wnt and autophagic signalling pathways are valuable targets for sensitizing SCCHN to irradiation. 相似文献
7.
Xiaoping Liu Weiping Ma Yanli Yan Suge Wu 《Journal of biochemical and molecular toxicology》2017,31(12)
Previous study has demonstrated that high mobility group nucleosome‐binding domain 5 (HMGN5) is involved in tumorigenesis and the development of multidrug resistance in several human cancers. However, the role of HMGN5 in esophageal squamous cell carcinoma (ESCC) remains unclear. Here, we showed that HMGN5 was significantly upregulated in ESCC cells. Knockdown of HMGN5 significantly inhibited cell growth and induced cell apoptosis of ESCC cells. Moreover, knockdown of HMGN5 increased the sensitivity of ESCC cells towards cisplatin. By contrast, overexpression of HMGN5 showed the opposite effects. Further experiments demonstrated that HMGN5 regulated the expression of multidrug resistance 1, cyclin B1, and Bcl‐2. Overall, our results reveal that HMGN5 promotes tumor progression of ESCC and is also an important regulator of chemoresistance. Our study suggests that inhibition of HMGN5 may be a potential strategy for improving effectiveness of ESCC treatment. 相似文献
8.
Honokiol inhibits in vitro and in vivo growth of oral squamous cell carcinoma through induction of apoptosis,cell cycle arrest and autophagy 下载免费PDF全文
Shu‐Hsin Chen Ching‐Yen Lin Ying‐Ray Lee 《Journal of cellular and molecular medicine》2018,22(3):1894-1908
Honokiol, an active natural product derived from Magnolia officinalis, exerted anticancer effects through a variety of mechanisms on multiple types of cancers. In this study, the molecular mechanisms of honokiol in suppressing the human oral squamous cell carcinoma (OSCC) cells were evaluated. Treatment of two OSCC cell lines with honokiol resulted in reducing the cell proliferation and arresting the cell cycle at G1 stage which was correlated with the down‐regulation of Cdk2 and Cdk4 and the up‐regulation of cell cycle suppressors, p21 and p27. In addition, the caspase‐dependent programmed cell death was substantially detected, and the autophagy was induced as the autophagosome formation and autophagic flux proceeded. Modulation of autophagy by autophagic inducer, rapamycin or inhibitors, 3‐MA or bafilomycin, potentiated the honokiol‐mediated anti‐OSCC effects where honokiol exerted multiple actions in suppression of MAPK pathway and regulation of Akt/mTOR or AMPK pathways. As compared to clinical therapeutic agent, 5‐FU, honokiol exhibited more potent activity against OSCC cells and synergistically enhanced the cytotoxic effect of 5‐FU. Furthermore, orally administrated honokiol exerted effective antitumour activity in vivo in OSCC‐xenografted mice. Thus, this study revealed that honokiol could be a promising candidate in preventing human OSCCs. 相似文献
9.
Yi Yang He Li Zhifeng He Deyao Xie Jiangwei Ni Xiaoming Lin 《Journal of cellular biochemistry》2019,120(11):18702-18713
Esophageal squamous cell carcinoma (ESCC) is the eighth most prevalent cancer and the sixth leading cause for cancer-associated mortality. MicroRNAs (miRNAs) are increasingly reported to exert important regulatory functions in human cancers by regulating certain gene expression. miR-488-3p has been identified to be a tumor suppressor in multiple cancers, but its role in ESCC is yet to be investigated. The present study aimed to uncover the biological role and modulatory mechanism of miR-488-3p in ESCC. We first revealed the downregulation of miR-488-3p in ESCC tissues and cell lines. Gain-of-function assays confirmed that miR-488-3p overexpression abrogated proliferation and accelerated apoptosis. Mechanistically, we identified via bioinformatics tool and confirmed that zinc finger and BTB domain containing 2 (ZBTB2) was a target for miR-488-3p. Moreover, miR-488-3p activated the p53 pathway through suppressing ZBTB2. Finally, rescue assays proved that ZBTB2 was involved in the regulation of miR-488-3p on proliferation and apoptosis in ESCC. Additionally, we verified that miR-488-3p had alternate targets in ESCC by confirming the involvement of protein kinase, DNA-activated, catalytic subunit (PRKDC), a known target for miR-488-3p, in miR-488-3p-mediated regulation on ESCC. In sum, this study revealed that miR-488-3p inhibited proliferation and induced apoptosis by targeting ZBTB2 and activating p53 pathway in esophageal squamous cell carcinoma, providing a novel biological target for ESCC. 相似文献
10.
11.
T Tomic T Botton M Cerezo G Robert F Luciano A Puissant P Gounon M Allegra C Bertolotto J-M Bereder S Tartare-Deckert P Bahadoran P Auberger R Ballotti S Rocchi 《Cell death & disease》2011,2(9):e199
Metformin is the most widely used antidiabetic drug because of its proven efficacy and limited secondary effects. Interestingly, recent studies have reported that metformin can block the growth of different tumor types. Here, we show that metformin exerts antiproliferative effects on melanoma cells, whereas normal human melanocytes are resistant to these metformin-induced effects. To better understand the basis of this antiproliferative effect of metformin in melanoma, we characterized the sequence of events underlying metformin action. We showed that 24 h metformin treatment induced a cell cycle arrest in G0/G1 phases, while after 72 h, melanoma cells underwent autophagy as demonstrated by electron microscopy, immunochemistry, and by quantification of the autolysosome-associated LC3 and Beclin1 proteins. In addition, 96 h post metformin treatment we observed robust apoptosis of melanoma cells. Interestingly, inhibition of autophagy by knocking down LC3 or ATG5 decreased the extent of apoptosis, and suppressed the antiproliferative effect of metformin on melanoma cells, suggesting that apoptosis is a consequence of autophagy. The relevance of these observations were confirmed in vivo, as we showed that metformin treatment impaired the melanoma tumor growth in mice, and induced autophagy and apoptosis markers. Taken together, our data suggest that metformin has an important impact on melanoma growth, and may therefore be beneficial in patients with melanoma. 相似文献
12.
A series of novel indoline derivatives were synthesized and evaluated for antiproliferative activity against four selected cancer cell lines (Hela, A549, HepG2 and KYSE30). Among them, compound 20 displayed the potent inhibition activity against esophageal cancer cells (Kyse30, Kyse450, Kyse510 and EC109). Cellular mechanism studies in esophageal squamous cell carcinoma (ESCC) cells elucidated compound 20 inhibited cell growths in vitro and in vivo, reduced colony formation, arrested cell cycle at M phase, and induced Noxa-dependent apoptosis in ESCC. Importantly, compound 20 was identified as a novel Noxa mediated apoptosis inducer. These results suggested that compound 20 might be a promising anticancer agent with potential for development of further clinical applications. 相似文献
13.
The Octamer 4 gene (Oct4) is a master pluripotency controller that has been detected in several types of tumors. Here, we
examine the expression of Oct4 in human esophageal squamous cell carcinoma (ESCC). We found that punctate Oct4 protein was
expressed in most (93.7%) ESCC samples but it was not observed in esophageal mucosa. Some ESCC cells had the capacity to form
tumorospheres; those with an Oct4+-rich cell phenotype had increased proliferation and Oct4 mRNA levels compared to those of differentiated cells in culture
or xenograft tumors. The over-expression of Oct4 in ESCCs suggests that it is a potential target for ESCC therapy. Oct4 could
be a useful tumor marker in an immunohistochemical panel designed to differentiate between ESCC and esophageal mucosa. Expression
of Oct4 in tumorospheres might indicate the presence of a population of ECSCs and its expression in xenograft tumors suggests
that Oct4 is also associated with tumor metastasis. 相似文献
14.
Chengqi Guan Zhaoxiu Liu Cuihua Lu Mingbing Xiao Hui Shi Runzhou Ni Zhaolian Bian 《Journal of cellular biochemistry》2019,120(7):11726-11737
The microtubule binding protein, nucleolar spindle-associated protein 1 (NUSAP1), has a crucial function in mitosis and its expression is closely associated with carcinogenesis. Herein, we aimed to determine the function of NUSAP1 in the development of human esophageal squamous cell carcinoma (ESCC), and the association of NUSAP1 expression with ESCC. Immunohistochemical staining of ESCC tissue sections indicated that NUSAP1 was expressed to a higher degree in tumor tissues than in adjacent nontumor tissues. NUSAP1 levels were relevant closely to histological differentiation (P = 0.049). Overall survival was longer in patients with lower NUSAP1 levels ( P < 0.001). NUSAP1 expression ( P = 0.002), histological differentiation ( P < 0.001), tumor depth ( P = 0.045), lymph node metastases ( P < 0.001), and tumor-node-metastasis staging ( P = 0.008) were greatly associated with overall survival using univariate analysis. Multivariate analysis suggested that histological differentiation ( P = 0.014) and NUSAP1 expression ( P = 0.026) could be independent prognostic markers for ESCC. Additionally, the biological behavior of ESCC cells was investigated in vitro and in vivo. Suppression of NUSAP1 inhibited cellular proliferation and invasion, and induced cell cycle arrest and apoptosis in vitro. More importantly, knockdown of NUSAP1 led to inhibition of tumor formation in nude mice. These findings indicated that NUSAP1 is a potential prognostic biomarker in ESCC, and is an ESCC oncogene. Thus, NUSAP1 could represent a therapeutic target for ESCC. 相似文献
15.
Ya-Tian Liu Dan Zong Xue-Song Jiang Li Yin Li-Jun Wang Ting-Ting Wang Jun Zhu Xia He 《Journal of cellular biochemistry》2019,120(4):6250-6263
MicroRNA-32 (miR-32) functioned as a tumor oncogene in some cancer, which control genes involved in important biological and pathological functions and facilitate the tumor growth and metastasis. However, the role of miR-32 modulates esophageal squamous cell carcinoma (ESCC) malignant transformation has not been clarified. Here, we focused on the function and the underlying molecular mechanism of miR-32 in ESCC. Results discovered a significant increased expression of miR-32 in ESCC tissues and cells. Downregulation of miR-32 inhibited the migration, invasion, adhesion of ESCC cell lines (EC9706 and KYSE450), and the levels of EMT protein in vitro. In vivo, miR-32 inhibitors decrease tumor size, tumor weight, and the number of metastatic nodules. Hematoxylin and eosin (H&E) results revealed that inhibition of miR-32 attenuate lung metastasis. Immunohistochemistry and immunofluorescence assay showed increased level of E-cadherin and decreased level of N-cadherin and Vimentin with treatment of miR-32 inhibitors. Furthermore, miR-32 targeted the 3′-untranslated region (3′-UTR) of CXXC5, and inhibited the level of mRNA and protein of CXXC5. There is a negative correlation between the expressions of CXXC5 and miR-32. Then, after EC9706 and KYSE450 cells cotransfected with si-CXXC5 and miR-32 inhibitors, the ability of cell migration, invasion, and adhesion was significantly reduced. In addition, the protein expression of EMT and TGF-β signaling was also depressed. Collectively, these data supply an insight into the positive role of miR-32 in ESCC progression and metastasis, and its biological effects may attribute the inhibition of TGF-β signaling mediated by CXXC5. 相似文献
16.
17.
18.
Junliang Ma Yuhang Xiao Bo Tian Shaolin Chen Baihua Zhang Jie Wu Zhining Wu Xu Li Jinming Tang Desong Yang Yong Zhou Hui Wang Min Su Wenxiang Wang 《Journal of cellular biochemistry》2020,121(2):1374-1387
Long noncoding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). We previously demonstrated that a novel lncRNA, lnc-ABCA12-3, was overexpressed in ESCC tissues. However, the exact function of lnc-ABCA12-3 is unknown. In the current study, we aimed to evaluate the expression of lnc-ABCA12-3 in ESCC and to explore the potential mechanism of lnc-ABCA12-3 in cell migration, invasion, and proliferation. We showed that lnc-ABCA12-3 was upregulated in ESCC tumor tissues and cell lines. The increased expression of lnc-ABCA12-3 was positively associated with advanced tumor-node-metastasis stages and poor prognosis. The knockdown of lnc-ABCA12-3 inhibited the cell migration, invasion, and proliferation abilities of KYSE-510 and Eca-109 cells. We also found that fibronectin 1 (FN1) was upregulated in ESCC tumor tissues. The expression of FN1 messenger RNA was positively correlated with the expression of lnc-ABCA12-3 in ESCC tumor tissues. After lnc-ABCA12-3 knockdown, the expression of FN1 was downregulated. In addition, the overexpression of FN1 restored the abilities of cell migration, invasion and proliferation in Eca-109 cells. Further studies indicated that lnc-ABCA12-3 acted as a competing endogenous RNA for miR-200b-3p to regulate FN1 expression. In conclusion, these results suggest that lnc-ABCA12-3 is a novel oncogene in tumorigenesis and that its high expression is related to a poor prognosis for patients with ESCC. lnc-ABCA12-3 promotes cell migration, invasion, and proliferation via the regulation of FN1 in ESCC. Our data suggest that lnc-ABCA12-3 might serve as a potential prognostic biomarker and therapeutic target for ESCC. 相似文献
19.
食管鳞癌是我国常见的消化道恶性肿瘤,进展快且预后差。由于早期一般无明显症状,临床确诊的食管鳞癌大多已发展到了中晚期,治愈难度较大。越来越多的证据表明,在食管鳞癌发生发展过程中,染色体及基因组DNA畸变均是最常见的遗传学改变。文章就食管鳞癌染色体及基因组水平异常的研究进展作一综述。 相似文献