首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
神经轴突生长抑制因子Nogo—B在体分布广泛,提示其除了具有抑制中枢神经系统轴突再生作用外,可能还扮演其他重要的功能角色。该研究为探讨Nogo-B下游新的结合分子及其功能开展相应研究。通过设计诱饵蛋白筛选人脑cDNA文库、免疫共沉淀方法,寻找Nogo-B下游结合分子:通过流式细胞术,检测结合对于细胞凋亡的影响:通过绿色荧光蛋白标记和免疫组织化学方法,探讨Nogo-B诱导细胞凋亡的机制。结果提示,Clusterin除了与Nogo-66功能域在酵母双杂交系统中存在结合,与Nogo—B在哺乳细胞中也能发生结合。过表达Nogo-B可明显诱导HEK293细胞凋亡,与Clusterin共表达可下调早期细胞凋亡率,但后期Nogo—B可通过调节Clusterin由胞浆到胞核转位,进一步诱导细胞凋亡进程。该研究首次提出Nogo—B与Clusterin之间存在结合,且结合参与了Nogo-B诱导的细胞凋亡进程。  相似文献   

4.
Clusterin是近年来发现的新的抗细胞凋亡因子,尤其在肿瘤细胞中存在的高表达,并发挥抗肿瘤细胞凋亡的作用,本文将近年来有关Clusterin抗凋亡作用研究的新进展进行综述,希望能为今后对这一新的抗凋亡因子的研究提供帮助。  相似文献   

5.
Clusterin(CLU)是一种糖蛋白,在细胞内的存在形式多样,可分为核型、胞质型和分泌型,且相对分子质量大小也因其糖基化和剪切程度不同而差异较大。尽管CLU在哺乳动物组织和体液中普遍存在,但是近年来研究报道显示,CLU主要由肝脏组织表达并分泌,而且生理和病理情况下其表达差异明显。CLU在细胞中的存在形式、分子大小差异较大,使其功能多样,如CLU可通过调控细胞内吞、凋亡等方式参与神经性、纤维化以及代谢疾病的发生发展。本文将概述CLU蛋白的结构特点、基本功能及其在生理和病理过程中的作用和潜在调控机制。  相似文献   

6.
We examined the relationship between clusterin and activated complement in human heart infarction and evaluated the effect of this protein on ischemic rat neonatal cardiomyoblasts (H9c2) and isolated adult ventricular rat cardiomyocytes as in vitro models of acute myocardial infarction. Clusterin protects cells by inhibiting complement and colocalizes with complement on jeopardized human cardiomyocytes after infarction. The distribution of clusterin and complement factor C3d was evaluated in the infarcted human heart. We also analyzed the protein expression of clusterin in ischemic H9c2 cells. The binding of endogenous and purified human clusterin on H9c2 cells was analyzed by flow cytometry. Furthermore, the effect of clusterin on the viability of ischemically challenged H9c2 cells and isolated adult ventricular rat cardiomyocytes was analyzed. In human myocardial infarcts, clusterin was found on scattered, morphologically viable cardiomyocytes within the infarcted area that were negative for complement. In H9c2 cells, clusterin was rapidly expressed after ischemia. Its expression was reduced after reperfusion. Clusterin bound to single annexin V-positive or annexin V and propidium iodide-positive H9c2 cells. Clusterin inhibited ischemia-induced death in H9c2 cells as well as in isolated adult ventricular rat cardiomyocytes in the absence of complement. We conclude that ischemia induces the upregulation of clusterin in ischemically challenged, but viable, cardiomyocytes. Our data suggest that clusterin protects cardiomyocytes against ischemic cell death via a complement-independent pathway.  相似文献   

7.
Circadian variations of mouse liver, brain and heart lysosomal susceptibility to hypoxia were investigated. Lysosomal disruption during hypoxia was estimated on the basis of the following measurements: changes in percentage free activity of β-galactosidase and acid phosphatase, tissue loss of both lysosomal enzymes and accumulation of serum β-galactosidase. When exposure to hypoxia took place at the end of the rest phase or at the beginning of the active phase, it was accompanied by maximum increase of percent free activity. This, presumably represents a diffusion of enzymes from lysosomes due to altered membrane permeability. However, hypoxia when occurring during the second part of the active phase and first part of the rest phase resulted in tissues loss of lysosomal enzymes and accumulation of serum lysosomal enzymes. This is believed to represent the release of lysosomal enzymes in bulk from damaged or ruptured lysosomal membranes.  相似文献   

8.
9.
目的:研究Clusterin和p21基因在膀胱癌中的表达和临床意义及二者的相关性.方法:采用免疫组织化学检测20例正常膀胱组织(NB)、60例膀胱癌组织(BTCC)中Clusterin和p21蛋白的表达情况,根据染色强度和阳性细胞数作半定量分析.结果:Clus-terin、p21蛋白在膀胱癌中的阳性表达率明显高于正常膀胱组织,阳性表达率分别为70.0%、63.3%;20.0%、15.0%(P<0.05);二者在低分化、浸润性肿瘤的阳性表达率明显高于高分化、浅表性肿瘤(P<0.05),Clusterin和p21在膀胱癌中的表达存在正性相关(P<0.05).结论:Clusterin、p21蛋白的表达与膀胱癌病理组织学分级、临床分期相关,二者联合检测可为膀胱癌的诊断及预后提供一定参考价值.  相似文献   

10.
11.

Introduction

The tyrosine phosphatase SHP-1 negatively influences endothelial function, such as VEGF signaling and reactive oxygen species (ROS) formation, and has been shown to influence angiogenesis during tissue ischemia. In ischemic tissues, hypoxia induced angiogenesis is crucial for restoring oxygen supply. However, the exact mechanism how SHP-1 affects endothelial function during ischemia or hypoxia remains unclear. We performed in vitro endothelial cell culture experiments to characterize the role of SHP-1 during hypoxia.

Results

SHP-1 knock-down by specific antisense oligodesoxynucleotides (AS-Odn) increased cell growth as well as VEGF synthesis and secretion during 24 hours of hypoxia compared to control AS-Odn. This was prevented by HIF-1α inhibition (echinomycin and apigenin). SHP-1 knock-down as well as overexpression of a catalytically inactive SHP-1 (SHP-1 CS) further enhanced HIF-1α protein levels, whereas overexpression of a constitutively active SHP-1 (SHP-1 E74A) resulted in decreased HIF-1α levels during hypoxia, compared to wildtype SHP-1. Proteasome inhibition (MG132) returned HIF-1α levels to control or wildtype levels respectively in these cells. SHP-1 silencing did not alter HIF-1α mRNA levels. Finally, under hypoxic conditions SHP-1 knock-down enhanced intracellular endothelial reactive oxygen species (ROS) formation, as measured by oxidation of H2-DCF and DHE fluorescence.

Conclusions

SHP-1 decreases half-life of HIF-1α under hypoxic conditions resulting in decreased cell growth due to diminished VEGF synthesis and secretion. The regulatory effect of SHP-1 on HIF-1α stability may be mediated by inhibition of endothelial ROS formation stabilizing HIF-1α protein. These findings highlight the importance of SHP-1 in hypoxic signaling and its potential as therapeutic target in ischemic diseases.  相似文献   

12.
Mitochondrial Impairment in the Developing Brain After Hypoxia–Ischemia   总被引:3,自引:0,他引:3  
The pattern of cell death in the immature brain differs from that seen in the adult CNS. During normal development, more than half of the neurons are removed through apoptosis, and mediators like caspase-3 are highly upregulated. The contribution of apoptotic mechanisms in cell death appears also to be substantial in the developing brain, with a marked activation of downstream caspases and signs of DNA fragmentation. Mitochondria are important regulators of cell death through their role in energy metabolism and calcium homeostasis, and their ability to release apoptogenic proteins and to produce reactive oxygen species. We find that secondary brain injury is preceded by impairment of mitochondrial respiration, signs of membrane permeability transition, intramitochondrial accumulation of calcium, changes in the Bcl-2 family proteins, release of proapoptotic proteins (cytochrome C, apoptosis inducing factor) and downstream activation of caspase-9 and caspase-3 after hypoxia-ischemia. These data support the involvement of mitochondria-related mechanisms in perinatal brain injury.  相似文献   

13.
Sleep-disordered breathing with recurrent apnea produces chronic intermittent hypoxia (IH). We previously reported that IH leads to down-regulation of HIF-2α protein via a calpain-dependent signaling pathway resulting in oxidative stress. In the present study, we delineated the signaling pathways associated with calpain-dependent HIF-2α degradation in cell cultures and rats subjected to chronic IH. Reactive oxygen species (ROS) scavengers prevented HIF-2α degradation by IH and ROS mimetic decreased HIF-2α protein levels in rat pheochromocytoma PC12 cell cultures, suggesting that ROS mediate IH-induced HIF-2α degradation. IH activated xanthine oxidase (XO) by increased proteolytic conversion of xanthine dehydrogenase to XO. ROS generated by XO activated calpains, which contributed to HIF-2α degradation by IH. Calpain-induced HIF-2α degradation involves C-terminus but not the N-terminus of the HIF-2α protein. Pharmacological blockade as well as genetic knock down of XO prevented IH induced calpain activation and HIF-2α degradation in PC12 cells. Systemic administration of allopurinol to rats prevented IH-induced hypertension, oxidative stress and XO activation in adrenal medulla. These results demonstrate that ROS generated by XO activation mediates IH-induced HIF-2α degradation via activation of calpains.  相似文献   

14.
Clusterin是一种硫酸糖蛋白.最近研究发现,clusterin具有抗凋亡作用,同时对肾细胞具有保护作用,但抗凋亡的具体机制仍不清楚.为研究clusterin及其不同功能区域在人肾近曲小管上皮HK-2细胞中的抗凋亡作用,构建了含有全长及缺失前导序列的clusterin重组质粒(分别命名为pIRES2-EGFP/cluac和pIRES2-EGFP/clubc).将重组质粒转染人肾近曲小管上皮HK-2细胞后,检测转染细胞中clusterin的表达及其抗Na2SeO3(10μmol/L)诱导的凋亡作用.Western印迹显示,转染pIRES2-EGFP/cluac的HK-2细胞培养上清及细胞裂解液中均可检测到clusterin蛋白表达,但转染pIRES2-EGFP/clubc的HK-2细胞仅在裂解液中检测到clusterin,在培养上清液中未检测到该蛋白表达.流式细胞术检验显示,HK-2 /clubc细胞实验组出现明显凋亡峰,而 HK-2 /cluac细胞组则未见凋亡;两组的凋亡百分率之间也存在显著性差异(P<0.05).以Cy3标记的Annexin V染色后于荧光显微镜下观察细胞凋亡情况与FCM检测结果基本一致.上述结果证明,clusterin有明显的抑制人肾近曲小管上皮HK-2细胞凋亡的作用;clusterin前导序列是其发挥抗凋亡作用的必需功能区域,提示clusterin抗凋亡作用是通过细胞外途径产生的.  相似文献   

15.
Type 3 deiodinase (D3) inactivates thyroid hormones. Simonides et al. (2008) now report that hypoxia-induced D3 activation leads to reduction of 3,5,3'-triiodothyronine (T3) and oxygen consumption, suggesting that D3 activation is a component of cellular responses to hypoxia and supporting the idea of cell-specific regulation of thyroid hormone levels by deiodinases.  相似文献   

16.
Over the last 3 decades, the frequency of life-threatening human fungal infections has increased as advances in medical therapies, solid-organ and hematopoietic stem cell transplantations, an increasing geriatric population, and HIV infections have resulted in significant rises in susceptible patient populations. Although significant advances have been made in understanding how fungi cause disease, the dynamic microenvironments encountered by fungi during infection and the mechanisms by which they adapt to these microenvironments are not fully understood. As inhibiting and preventing in vivo fungal growth are main goals of antifungal therapies, understanding in vivo fungal metabolism in these host microenvironments is critical for the improvement of existing therapies or the design of new approaches. In this minireview, we focus on the emerging appreciation that pathogenic fungi like Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are exposed to oxygen-limited or hypoxic microenvironments during fungal pathogenesis. The implications of these in vivo hypoxic microenvironments for fungal metabolism and pathogenesis are discussed with an aim toward understanding the potential impact of hypoxia on invasive fungal infection outcomes.  相似文献   

17.
As phagocytic cells of central nervous system, excessive activation or cell death of microglia is involved in a lot of nervous system injury and degenerative disease, such as stroke, epilepsy, Parkinson''s disease, Alzheimer''s disease. Accumulating evidence indicates that hypoxia upregulates HIF-1α expression leading to cell death of microglia. However, the exact mechanism of cell death induced by hypoxia in microglia is not clear. In the current study, we showed that hypoxia induced cell death and autophagy in microglia. The suppression of autophagy using either pharmacologic inhibitors (3-methyladenine, bafilomycin A1) or RNA interference in essential autophagy genes (BECN1 and ATG5) decreased the cell death induced by hypoxia in microglia cells. Moreover, the suppression of HIF-1α using either pharmacologic inhibitors (3-MA, Baf A1) or RNA interference decreased the microglia death and autophagy in vitro. Taken together, these data indicate that hypoxia contributes to autophagic cell death of microglia through HIF-1α, and provide novel therapeutic interventions for cerebral hypoxic diseases associated with microglia activation.  相似文献   

18.
19.
Invasive species and bottom‐water hypoxia both constitute major global threats to the diversity and integrity of marine ecosystems. These stressors may interact with unexpected consequences, as invasive species that require an initial environmental disturbance to become established can subsequently become important drivers of ecological change. There is recent evidence that improved bottom‐water oxygen conditions in coastal areas of the northern Baltic Sea coincide with increased abundances of the invasive polychaetes Marenzelleria spp. Using a reactive‐transport model, we demonstrate that the long‐term bioirrigation activities of dense Marenzelleria populations have a major impact on sedimentary phosphorus dynamics. This may facilitate the switch from a seasonally hypoxic system back to a normoxic system by reducing the potential for sediment‐induced eutrophication in the upper water column. In contrast to short‐term laboratory experiments, our simulations, which cover a 10‐year period, show that Marenzelleria has the potential to enhance long‐term phosphorus retention in muddy sediments. Over time bioirrigation leads to a substantial increase in the iron‐bound phosphorus content of sediments while reducing the concentration of labile organic carbon. As surface sediments are maintained oxic, iron oxyhydroxides are able to persist and age into more refractory forms. The model illustrates mechanisms through which Marenzelleria can act as a driver of ecological change, although hypoxic disturbance or natural population declines in native species may be needed for them to initially become established. Invasive species are generally considered to have a negative impact; however, we show here that one of the main recent invaders in the Baltic Sea may provide important ecosystem services. This may be of particular importance in low‐diversity systems, where disturbances may dramatically alter ecosystem services due to low functional redundancy. Thus, an environmental problem in one region may be either exacerbated or alleviated by a single species from another region, with potentially ecosystem‐wide consequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号