首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Journal of Asia》2023,26(4):102138
We reconstructed Stomaphis phylogeny and analyzed evolutionary host-plant shifts. The molecular phylogeny revealed 23 well-supported lineages, each specialized to use specific host plant family, whilst host plants of Stomaphis aphids ranged across 6 orders, 11 families, 21 genera, and 28 species. This combination of high host specificity with evolutionarily distant host shifts is exceptional in herbivores. To explain this pattern, we propose one hypothesis among several possibilities: Stomaphis aphids are generalists with respect to the defensive chemicals produced by the plant, but specialists with respect to the stem surface structure of the host tree. This hypothesis predicts that tree taxa having stem surface structures preferred by Stomaphis would be used again and again by genetically distinct Stomaphis lineages. Consistent with this prediction, we found that different (occasionally phylogenetically distant) Stomaphis lineages shared the same host plant genera such as Alnus and Betula. This result suggests that, in the course of their evolutionary history, Japanese Stomaphis aphids have repeatedly colonized a limited number of host plant genera.  相似文献   

2.
The Javan ferret-badger Melogale orientalis (Carnivora: Mustelidae: Helictidinae) is a small carnivore endemic to Indonesia. In the family Mustelidae, 10 Eimeria, 12 Cystoisopora, one Isospora, and one Hammondia species are known, but no eimeriid coccidia has been yet described in the subfamily Helictinidae (ferret badgers). Coproscopic examination of Javan ferret-badgers imported into the Czech Republic revealed the presence of coccidian oocysts. Sporulated oocysts differ from other Eimeria known in the family Mustelidae by their small size (12.4–16.1 × 10.4–13.4 μm) and ovoidal shape. Morphological data and phylogenetic analyses of 18S rRNA and COI genes indicated a new species of Eimeria found in faecal samples of Javan ferret badgers. The species is described as E. melogale n. sp.  相似文献   

3.
Using species-level phylogenies, the speciation mode of Gyrodactylus species infecting a single host genus was evaluated. Eighteen Gyrodactylus species were collected from gobies of the genus Pomatoschistus and sympatric fish species across the distribution range of the hosts. The V4 region of the ssrRNA and the internal transcribed spacers encompassing the 5.8S rRNA gene were sequenced; by including published sequences a total of 30 species representing all subgenera were used in the data analyses. The molecular phylogeny did not support the morphological groupings into subgenera as based on the excretory system, suggesting that the genus needs systematic revisions. Paraphyly of the total Gyrodactylus fauna of the gobies indicates that at least two independent colonisation events were involved, giving rise to two separate groups, belonging to the subgenus Mesonephrotus and Paranephrotus, respectively. The most recent association probably originated from a host switching event from Gyrodactylus arcuatus, which parasitises three-spined stickleback, onto Pomatoschistus gobies. These species are highly host-specific and form a monophyletic group, two possible ‘signatures’ of co-speciation. Host specificity was lower in the second group. The colonising capacity of these species is illustrated by a host jump from gobiids to another fish order (Anguilliformes), supporting the hypothesis of a European origin of Gyrodactylus anguillae and its intercontinental introduction by the eel trade. Thus, allopatric speciation seems to be the dominant mode of speciation in this host–parasite system, with a possible case of sympatric speciation.  相似文献   

4.
The extreme biological diversity of Oceanian archipelagos has long stimulated research in ecology and evolution. However, parasitic protists in this geographic area remained neglected and no molecular analyses have been carried out to understand the evolutionary patterns and relationships with their hosts. Papua New Guinea (PNG) is a biodiversity hotspot containing over 5% of the world's biodiversity in less than 0.5% of the total land area. In the current work, we examined insect heteropteran hosts collected in PNG for the presence of trypanosomatid parasites. The diversity of insect flagellates was analysed, to our knowledge for the first time, east of Wallace's Line, one of the most distinct biogeographic boundaries of the world. Out of 907 investigated specimens from 138 species and 23 families of the true bugs collected in eight localities, 135 (15%) were infected by at least one trypanosomatid species. High species diversity of captured hosts correlated with high diversity of detected trypanosomatids. Of 46 trypanosomatid Typing Units documented in PNG, only eight were known from other geographic locations, while 38 TUs (~83%) have not been previously encountered. The widespread trypanosomatid TUs were found in both widely distributed and endemic/sub-endemic insects. Approximately one-third of the endemic trypanosomatid TUs were found in widely distributed hosts, while the remaining species were confined to endemic and sub-endemic insects. The TUs from PNG form clades with conspicuous host-parasite coevolutionary patterns, as well as those with a remarkable lack of this trait. In addition, our analysis revealed new members of the subfamilies Leishmaniinae and Strigomonadinae, potentially representing new genera of trypanosomatids.  相似文献   

5.
6.
Causal mechanisms underlying host specificity in bat ectoparasites   总被引:4,自引:0,他引:4  
In parasites, host specificity may result either from restricted dispersal capacity or from fixed coevolutionary host-parasite adaptations. Knowledge of those proximal mechanisms leading to particular host specificity is fundamental to understand host-parasite interactions and potential coevolution of parasites and hosts. The relative importance of these two mechanisms was quantified through infection and cross-infection experiments using mites and bats as a model. Monospecific pools of parasitic mites (Spinturnix myoti and S. andegavinus) were subjected either to individual bats belonging to their traditional, native bat host species, or to another substitute host species within the same bat genus (Myotis). The two parasite species reacted differently to these treatments. S. myoti exhibited a clear preference for, and had a higher fitness on, its native host, Myotis myotis. In contrast, S. andegavinus showed no host choice, although its fitness was higher on its native host M. daubentoni. The causal mechanisms mediating host specificity can apparently differ within closely related host-parasite systems.  相似文献   

7.
Studies were conducted to examine the phenology, geographic distribution, and host specificity of the Solenopsis invicta virus-1 (SINV-1). Two genotypes examined, SINV-1 and -1A, exhibited similar seasonal prevalence patterns. Infection rates among colonies of S. invicta in Gainesville, Florida, were lowest from early winter (December) to early spring (April) increasing rapidly in late spring (May) and remaining high through August before declining again in the fall (September/October). Correlation analysis revealed a significant relationship between mean monthly temperature and SINV-1 (p<0.0005, r=0.82) and SINV-1A (p<0.0001, r=0.86) infection rates in S. invicta colonies. SINV-1 was widely distributed among S. invicta populations. The virus was detected in S. invicta from Argentina and from all U.S. states examined, with the exception of New Mexico. SINV-1 and -1A were also detected in other Solenopsis species. SINV-1 was detected in Solenopsis richteri and the S. invicta/richteri hybrid collected from northern Alabama and Solenopsis geminata from Florida. SINV-1A was detected in S. geminata and Solenopsis carolinensis in Florida and the S. invicta/richteri hybrid in Alabama. Of the 1989 arthropods collected from 6 pitfall trap experiments from Gainesville and Williston, Florida, none except S. invicta tested positive for SINV-1 or SINV-1A. SINV-1 did not appear to infect or replicate within Sf9 or Dm-2 cells in vitro. The number of SINV-1 genome copies did not significantly increase over the course of the experiment, nor were any cytopathic effects observed. Phylogenetic analyses of SINV-1/-1A nucleotide sequences indicated significant divergence between viruses collected from Argentina and the U.S.  相似文献   

8.
The adaptive significance of egg size of skippers (Lepidoptera; Hesperiidae) in Japan was evaluated in relation to the leaf toughness of their major host grasses. The hesperids that fed on tougher grasses laid larger eggs. Hesperids that laid larger eggs were larger in body size, but lower in fecundity. They also had a wider host range. Thus, despite the lower fecundity, hesperids may benefit from large eggs by having a wider host range of larvae. Grass feeders had wider range of host plants than broadleaf feeders.  相似文献   

9.
Miracidia of Schistosoma mansoni penetrate into many kinds of snails, but development of normal sporocysts takes place only in certain species of Biomphalaria. Different populations of this snail vary greatly in laboratory infection rates with S. mansoni originating from diverse geographic localities. Cross-exposure experiments show that compatibility factors exist in both snails and parasites. Susceptibility of stocks of Biomphalaria to particular strains of S. mansoni is genetically determined and may be modified by selection in the laboratory. In a compatible snail, the sporocyst develops without host tissue reaction; in incompatible snails the early larvae are rapidly surrounded by amebocytes and fibroblasts, and destroyed. This reaction resembles the generalized host cellular response elicited by any foreign body. An individual snail exposed to many miracidia may have both developing and encapsulated sporocysts side by side within its tissues. The weight of current evidence suggests that elicitation or absence of this cellular response resides in the recognition or nonrecognition of the sporocyst as a foreign body. The sporocyst tegument surface, which forms within a few hours after miracidial penetration, may have a molecular conformation identical with that of the snail, or may be able to bind specific host molecules, so that detection and subsequent encapsulation by host cells are averted. Presuming genetic determination of the sporocyst surface structure and of the host cell detection capability, differing infection rates would result from the particular frequencies of relevant genes in the populations concerned.  相似文献   

10.
Heterobothrium okamotoi, a monogenean gill parasite, shows high host specificity for tiger puffer, Takifugu rubripes. In the present study, in vivo and in vitro experimental infections were conducted using various fish species, including T. rubripes, to understand the mechanisms of specificity. In in vivo experiments, T. rubripes, grass puffer, Takifugu niphobles, olive flounder, Paralichthys olivaceus, and red sea bream, Pagrus major, were exposed to oncomiracidia of H. okamotoi labelled with a fluorescent dye, 5- (and -6) carboxyfluorescein diacetate succinimidyl ester, and the numbers of parasites on the gills and skin were recorded at intervals. Oncomiracidia were attached to gills and skin of all the experimental fish species immediately after exposure, and the infection intensity on T. rubripes was higher than that on T. niphobles and much higher than those on the other two species. After 2 days, the attached parasites remained on the gills of T. rubripes, but disappeared from the other hosts. During in vitro experiments, gill filaments excised from seven different fish species (four fish species used in the in vivo experiments and panther puffer, Takifugu pardalis, southern flounder, Paralichthys lethostigma and spotted halibut, Verasper variegates) were exposed to oncomiracidia and the attachment to each fish species and subsequent larval behaviour was observed. The percentage of post-larvae that attached to T. rubripes was slightly higher than those which attached to congeneric fish species and much higher than those of non-tetraodontid fish species. In vivo and in vitro experiments demonstrated that oncomiracidia of H. okamotoi have an affinity for their natural host, T. rubripes, and congeneric fish species. The disappearance of attached post-larvae from 'alien' hosts within 2 days during in vivo experiments suggested that host recognition by oncomiracidia and subsequent post-larval survivability are involved in the host specificity of H. okamotoi.  相似文献   

11.
Host-parasite coevolution is one of the main topics of the evolutionary biology of host-parasite associations. The majority of monogeneans parasitizing fish exhibit a high degree of host specificity. As a result, their evolutionary history might be intertwined with that of their fish hosts. The Cichlidae represent a diverse group of secondary freshwater fish with disjunctive distribution. Host-specific dactylogyrid monogeneans commonly parasitize cichlid fish. Their high diversity is associated with the main areas of cichlid distribution, i.e., Neotropical America and Africa. Nevertheless, the parasite fauna of cichlids from Neotropical America is still underexplored. A total of 31 cichlid species were examined for the presence of monogeneans, with 20 of them being parasitized. On these cichlids, 30 monogeneans belonging to the genera Gussevia, Trinidactylus, and Scadicleithrum were identified, 17 of them potentially representing new species for science. Phylogenetic analyses revealed three monophyletic groups of Neotropic cichlid monogeneans. Genus Gussevia was monophyletic, while Sciadicleithrum resulted polyphyletic. Sciedicleithrum from South America and Sciadicleithrum from Mexico represented two divergent lineages. The plesiomorphic Neotropical cichlid host group for dactylogyrid monogeneans was Cichlini, from which the representatives of other Neotropical cichlid tribes were colonised. Cophylogenetic analyses revealed a statistically significant cophylogenetic signal in the investigated host-parasite system, with host switch and duplication representing the main coevolutionary events for monogeneans parasitizing Neotropical cichlids. This scenario is in accordance with previous studies focussed on dactylogyridean monogeneans parasitizing freshwater fish in Europe and Africa.  相似文献   

12.
Scotch broom, Cytisus scoparius (Fabaceae), is a shrub native to Europe that is invasive in the USA, New Zealand and Australia. The psyllid Arytainilla spartiophila has been purposely introduced to Australia and New Zealand as a biological control agent of C. scoparius, but is an accidental introduction to California. Lupines (Lupinus spp.) are the closest native taxon to Cytisus in North America, and are therefore considered to be at the highest risk for non-target damage. However, because no lupines are native to Australia or New Zealand, only one imported forage species was evaluated during prior host specificity testing. We conducted a laboratory nymphal transfer experiment, a field choice experiment and a field survey to assess risk to three lupine species (Lupinus albifrons, Lupinus bicolor and Lupinus formosus). In the laboratory, 20% of third-instar nymphs were able to develop to adulthood on L. formosus but not on the other lupine species, while 40% completed development on C. scoparius. In the field experiment, potted lupine and C. scoparius plants were placed beside large infested C. scoparius plants; oviposition occurred on all the potted C. scoparius plants, but on none of the lupines. In the field survey, no A. spartiophila eggs or nymphs were found on naturally occurring lupines growing adjacent to infested C. scoparius. The results indicate that A. spartiophila is not likely to damage or reproduce on lupines in the field. This study provides an example of how field studies can help clarify the host specificity of biological control agents.  相似文献   

13.
The genetic mechanisms underlying host specificity of parasitic infections are largely unknown. After hatching, the larvae of the monogenean parasite, Heterobothrium okamotoi, attach to the gill filaments of hosts and the post-larval worms develop there by consuming nutrients from the host. The susceptibility to H. okamotoi infection differs markedly among fish species. While this parasite can grow on tiger pufferfish (also called fugu), Takifugu rubripes, it appears to be rejected by a close congener, grass pufferfish, Takifugu niphobles, after initial attachment to the gills. To determine the genetic architecture of the pufferfish responsible for this host specificity, we performed genome-wide quantitative trait loci analysis. We raised second generation (F2) hybrids of the two pufferfish species and experimentally infected them with the monogenean in vivo. To assess possible differences in host mechanisms between early and later periods of infection, we sampled fish three h and 21 days after exposure. Genome scanning of fish from the 3 h infection trial revealed suggestive quantitative trait loci on linkage groups 2 and 14, which affected the number of parasites on the gill. However, analysis of fish 21 days p.i. detected a significant quantitative trait locus on linkage group 9 and three other suggestive quantitative trait loci on linkage groups 7, 18 and 22. These results indicated the polygenic nature of the host mechanisms involved in the infection/rejection of H. okamotoi. Moreover the analyses suggested that host factors may play a more important role during the growth period of the parasite than during initial host recognition at the time of attachment. Within the 95% confidence interval of the linkage group 9 quantitative trait locus in the fugu genome, there were 214 annotated protein-coding genes, including immunity-related genes such as Irak4, Muc2 and Muc5ac.  相似文献   

14.
15.
A comparative analysis of sperm-head morphology and measurements in 17 species from nine genera of African Murinae: Rattus rattus, Mastomys coucha, M. huberti, M. erythroleucus, Mastomys sp. 2, Praomys albipes, P. fumatus, Mus mahomet, Arvicanthis somalicus, A. abyssinicus, A. dembeensis, Arvicanthis sp., Lemniscomys macculus, Pelomys harringtoni, Acomys cahirinus, Acomys sp., Uranomys ruddi, was carried out. Spermatozoa of all examined species are of the same basic type. They consist of an asymmetrical head, falciform or scythelike in shape, and a tail attached to the ventrocaudal surface of the head. There are great interspecific differences in sperm morphology and size. The significance of this variation for estimation of taxonomic aspects and phylogenetic relationships among the species, as well as between them and other groups, is discussed. The sperm morphology supports a close evolutionary relationship among the genera Lemniscomys and Arvicanthis. It also indicates that Pelomys is distinctive. The relationships between Acomys and Uranomys are discussed.  相似文献   

16.
Diserud OH  Odegaard F 《Biometrics》2000,56(3):855-861
In this paper, we present a new stochastic model where the host specificity among organisms in trophic interactions in a community, say parasite-host interactions, is estimated by a beta-binomial model. The expected proportion of the host species in a community that a given parasite species is utilizing is modeled as a realization from an inhomogeneous Poisson process, where the rate of this process is assumed to be proportional to a beta probability distribution. The observed number of host species utilized by the parasites is then binomially distributed with the number of trials equaling the number of different host species in the sample. When the degree of polyphagy is estimated by the parameters of the beta-binomial model, quantities like community host specificity and the expected total number of parasite species that will utilize the host species in the community can be predicted as functions of the number of host species available. The predictions can then be applied in analysis of, e.g., symbiotic interactions among organisms, local species richness, and community structure.  相似文献   

17.
Podocotyloides stenometra Pritchard, 1966 (Digenea: Opecoelidae) is the only trematode known to infect anthozoan corals. It causes disease in coral polyps of the genus Porites Link (Scleractinia: Poritidae) and its life-cycle depends on ingestion of these polyps by butterflyfishes (Perciformes: Chaetodontidae). This species has been reported throughout the Indo-Pacific, from the Seychelles to the Galápagos, but no study has investigated whether multiple species are involved. Here, we recollect P. stenometra from its type-host and type-locality, in Hawaiian waters, and describe four new species from examination of 768 butterflyfishes from French Polynesia. On the basis of morphology, phylogeny and life-history, we propose Polypipapiliotrema Martin, Cutmore & Cribb n. gen. and the Polypipapiliotrematinae Martin, Cutmore & Cribb n. subf., for P. stenometra (Pritchard) n. comb., P. citerovarium Martin, Cutmore & Cribb n. sp., P. hadrometra Martin, Cutmore & Cribb n. sp., P. heniochi Martin, Cutmore & Cribb n. sp., and P. ovatheculum Martin, Cutmore & Cribb n. sp. Given the diversity uncovered here and the ubiquity, abundance and diversity of butterflyfishes on coral reefs, we predict that Polypipapiliotrema will prove to comprise a rich complex of species causing disease in corals across the Indo-Pacific. The unique life-cycle of these taxa is consistent with phylogenetic distinction of the group and provides evidence for a broader basis of diversification among the family. We argue that life-cycle specialisation, in terms of adoption of disparate second intermediate host groups, has been a key driver of the diversification and richness of the Opecoelidae, the largest of all trematode families and the group most frequently encountered in coral reef fishes.  相似文献   

18.
The encounter/compatibility paradigm of host specificity provides three qualitative pathways to the success or failure of a potential host-parasite interaction. It is usually impossible to distinguish between two of these (encounter and compatibility filters closed versus encounter filter open and compatibility filter closed) because unsuccessful infection attempts are difficult to observe in nature. We were able to open the encounter filter under experimental laboratory conditions. Our analytical system used the rhizocephalan barnacle, Sacculina carcini, a parasitic castrator of the European green crab, Carcinus maenas, and Pachygrapsus marmoratus, a native European crab that occurs with C. maenas but is not parasitized by S. carcini in nature. Penetration followed by unsuccessful infection of P. marmoratus crabs by parasitic barnacle larvae leaves a uniquely permanent record in the thoracic ganglion of the crabs. This provided us with a novel tool to quantify the encounter filter in a host-parasite system in nature. We demonstrated, in the laboratory, that the compatibility filter was closed and that, in nature, even where barnacle larvae were present, the encounter filter was also effectively closed. The closure of both filters in nature explains the failure of this potential host-parasite interaction, an outcome favored by selection in both host and parasite.  相似文献   

19.
Ticks are obligate blood‐sucking ectoparasites, which not only directly damage through bites but also transmit many pathogens. China has a high diversity of tick species, 125 species have been reported, including 111 hard tick and 14 soft tick species. Many of the ticks are important vectors of pathogens, resulting in zoonoses. The dynamics of ticks are affected by both the host and habitat environment. However, systematic studies on the geographical distribution, host diversity, and specificity of ticks are limited in China. To achieve this goal, the relevant available data were summarized and analyzed in this study. Ticks are distributed in all parts of China and Xinjiang has the most records of ticks. The distribution of ticks in adjacent areas is similar, indicating that the habitat environment affects their distribution. Most ticks are widely distributed, whereas some species are endemic to their distributed regions. Ticks are parasitic on mammals, birds, and reptiles, of which mammals are the main host species. Overall, most ticks parasitize different hosts, only a few ticks have strict host specificity, such as ticks that are specifically parasitic on reptiles and bats. In addition, environmental changes and control efforts also influence the dynamics of ticks. These results can better reveal tick biological traits and are valuable for tick control.  相似文献   

20.
Anaporrhutine gorgoderids (Digenea: Gorgoderidae: Anaporrhutinae) found in the body cavity of six species of elasmobranchs from the orders Carcharhiniformes, Myliobatiformes and Orectolobiformes from Australian waters were found to belong to the genus Staphylorchis. Although these specimens were morphologically variable, sequences of ITS2 and 28S ribosomal DNA from specimens from three host families and two host orders were identical. Based on morphological and molecular data these specimens were identified as the type-species of the genus, Staphylorchis cymatodes. New measurements are provided for S. cymatodes, and for the first time genetic data are presented for this species. In addition to providing new morphological and molecular data for S. cymatodes, the previously described species S. gigas, S. parisi and S. scoliodonii, are here synonymised with S. cymatodes. This implies that S. cymatodes, as conceived here, has remarkably low host-specificity, being recorded from eight elasmobranch species from four families and three orders, has a wide geographical distribution in the Indo-west Pacific from off India, in the Bay of Bengal, to Moreton Bay in the Coral Sea, and is morphologically plastic, with body size, size of specific organs and body shape differing dramatically between specimens from different host species. The genus Staphylorchis now contains only two valid species, S. cymatodes and S. pacifica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号