首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Degenerin/epithelial Na+ channels (DEG/ENaCs) are Na+ channels that are blocked by the diuretic amiloride. In general, they are impermeable for Ca2+ or have a very low permeability for Ca2+. We describe here, however, that a DEG/ENaC from the cnidarian Hydra magnipapillata, the Hydra Na+ channel (HyNaC), is highly permeable for Ca2+ (PCa/PNa = 3.8). HyNaC is directly gated by Hydra neuropeptides, and in Xenopus laevis oocytes expressing HyNaCs, RFamides elicit currents with biphasic kinetics, with a fast transient component and a slower sustained component. Although it was previously reported that the sustained component is unselective for monovalent cations, the selectivity of the transient component had remained unknown. Here, we show that the transient current component arises from secondary activation of the Ca2+-activated Cl channel (CaCC) of Xenopus oocytes. Inhibiting the activation of the CaCC leads to a simple on–off response of peptide-activated currents with no apparent desensitization. In addition, we identify a conserved ring of negative charges at the outer entrance of the HyNaC pore that is crucial for the high Ca2+ permeability, presumably by attracting divalent cations to the pore. At more positive membrane potentials, the binding of Ca2+ to the ring of negative charges increasingly blocks HyNaC currents. Thus, HyNaC is the first member of the DEG/ENaC gene family with a high Ca2+ permeability.  相似文献   

3.
The inactivation domain of STIM1 (IDSTIM: amino acids 470–491) has been described as necessary for Ca2+-dependent inactivation (CDI) of Ca2+ release–activated Ca2+ (CRAC) channels, but its mechanism of action is unknown. Here we identify acidic residues within IDSTIM that control the extent of CDI and examine functional interactions of IDSTIM with Orai1 pore residues W76 and Y80. Alanine scanning revealed three IDSTIM residues (D476/D478/D479) that are critical for generating full CDI. Disabling IDSTIM by a triple alanine substitution for these three residues (“STIM1 3A”) or by truncation of the entire domain (STIM11–469) reduced CDI to the same residual level observed for the Orai1 pore mutant W76A (approximately one third of the extent seen with full-length STIM1). Results of noise analysis showed that STIM11–469 and Orai1 W76A mutants do not reduce channel open probability or unitary Ca2+ conductance, factors that determine local Ca2+ accumulation, suggesting that they diminish CDI instead by inhibiting the CDI gating mechanism. We tested for functional coupling between IDSTIM and the Orai1 pore by double-mutant cycle analysis. The effects on CDI of mutations disabling IDSTIM or W76 were not additive, demonstrating that IDSTIM and W76 are strongly coupled and act in concert to generate full-strength CDI. Interestingly, disabling IDSTIM and W76 separately gave opposite results in Orai1 Y80A channels: channels with W76 but lacking IDSTIM generated approximately two thirds of the WT extent of CDI but those with IDSTIM but lacking W76 completely failed to inactivate. Together, our results suggest that Y80 alone is sufficient to generate residual CDI, but acts as a barrier to full CDI. Although IDSTIM is not required as a Ca2+ sensor for CDI, it acts in concert with W76 to progress beyond the residual inactivated state and enable CRAC channels to reach the full extent of inactivation.  相似文献   

4.
Depletion of intracellular Ca2 + stores in mammalian cells results in Ca2 + entry across the plasma membrane mediated primarily by Ca2 + release-activated Ca2 + (CRAC) channels. Ca2 + influx through these channels is required for the maintenance of homeostasis and Ca2 + signaling in most cell types. One of the main features of native CRAC channels is fast Ca2 +-dependent inactivation (FCDI), where Ca2 + entering through the channel binds to a site near its intracellular mouth and causes a conformational change, closing the channel and limiting further Ca2 + entry. Early studies suggested that FCDI of CRAC channels was mediated by calmodulin. However, since the discovery of STIM1 and Orai1 proteins as the basic molecular components of the CRAC channel, it has become apparent that FCDI is a more complex phenomenon. Data obtained using heterologous overexpression of STIM1 and Orai1 suggest that, in addition to calmodulin, several cytoplasmic domains of STIM1 and Orai1 and the selectivity filter within the channel pore are required for FCDI. The stoichiometry of STIM1 binding to Orai1 also has emerged as an important determinant of FCDI. Consequently, STIM1 protein expression levels have the potential to be an endogenous regulator of CRAC channel Ca2 + influx. This review discusses the current understanding of the molecular mechanisms governing the FCDI of CRAC channels, including an evaluation of further experiments that may delineate whether STIM1 and/or Orai1 protein expression is endogenously regulated to modulate CRAC channel function, or may be dysregulated in some pathophysiological states.  相似文献   

5.
MthK is a Ca2+-gated K+ channel whose activity is inhibited by cytoplasmic H+. To determine possible mechanisms underlying the channel’s proton sensitivity and the relation between H+ inhibition and Ca2+-dependent gating, we recorded current through MthK channels incorporated into planar lipid bilayers. Each bilayer recording was obtained at up to six different [Ca2+] (ranging from nominally 0 to 30 mM) at a given [H+], in which the solutions bathing the cytoplasmic side of the channels were changed via a perfusion system to ensure complete solution exchanges. We observed a steep relation between [Ca2+] and open probability (Po), with a mean Hill coefficient (nH) of 9.9 ± 0.9. Neither the maximal Po (0.93 ± 0.005) nor nH changed significantly as a function of [H+] over pH ranging from 6.5 to 9.0. In addition, MthK channel activation in the nominal absence of Ca2+ was not H+ sensitive over pH ranging from 7.3 to 9.0. However, increasing [H+] raised the EC50 for Ca2+ activation by ∼4.7-fold per tenfold increase in [H+], displaying a linear relation between log(EC50) and log([H+]) (i.e., pH) over pH ranging from 6.5 to 9.0. Collectively, these results suggest that H+ binding does not directly modulate either the channel’s closed–open equilibrium or the allosteric coupling between Ca2+ binding and channel opening. We can account for the Ca2+ activation and proton sensitivity of MthK gating quantitatively by assuming that Ca2+ allosterically activates MthK, whereas H+ opposes activation by destabilizing the binding of Ca2+.  相似文献   

6.
Potassium channels allow the selective flux of K+ excluding the smaller, and more abundant in the extracellular solution, Na+ ions. Here we show that Shab is a typical K+ channel that excludes Na+ under bi-ionic, Nao/Ki or Nao/Rbi, conditions. However, when internal K+ is replaced by Cs+ (Nao/Csi), stable inward Na+ and outward Cs+ currents are observed. These currents show that Shab selectivity is not accounted for by protein structural elements alone, as implicit in the snug-fit model of selectivity. Additionally, here we report the block of Shab channels by external Ca2+ ions, and compare the effect that internal K+ replacement exerts on both Ca2+ and TEA block. Our observations indicate that Ca2+ blocks the channels at a site located near the external TEA binding site, and that this pore region changes conformation under conditions that allow Na+ permeation. In contrast, the latter ion conditions do not significantly affect the binding of quinidine to the pore central cavity. Based on our observations and the structural information derived from the NaK bacterial channel, we hypothesize that Ca2+ is probably coordinated by main chain carbonyls of the pore´s first K+-binding site.  相似文献   

7.
After endoplasmic reticulum (ER) Ca2+ store depletion, Orai channels in the plasma membrane (PM) are activated directly by ER-resident stromal interacting molecule (STIM) proteins to form the Ca2+-selective Ca2+ release-activated Ca2+ (CRAC) channel. Of the three human Orai channel homologues, only Orai3 can be activated by high concentrations (>50 µM) of 2-aminoethyl diphenylborinate (2-APB). 2-APB activation of Orai3 occurs without STIM1–Orai3 interaction or store depletion, and results in a cationic, nonselective current characterized by biphasic inward and outward rectification. Here we use cysteine scanning mutagenesis, thiol-reactive reagents, and patch-clamp analysis to define the residues that assist in formation of the 2-APB–activated Orai3 pore. Mutating transmembrane (TM) 1 residues Q83, V77, and L70 to cysteine results in potentiated block by cadmium ions (Cd2+). TM1 mutants E81C, G73A, G73C, and R66C form channels that are not sensitive to 2-APB activation. We also find that Orai3 mutant V77C is sensitive to block by 2-aminoethyl methanethiosulfonate (MTSEA), but not 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET). Block induced by reaction with MTSEA is state dependent, as it occurs only when Orai3-V77C channels are opened by either 2-APB or by cotransfection with STIM1 and concurrent passive store depletion. We also analyzed TM3 residue E165. Mutation E165A in Orai3 results in diminished 2-APB–activated currents. However, it has little effect on store-operated current density. Furthermore, mutation E165C results in Cd2+-induced block that is state dependent: Cd2+ only blocks 2-APB–activated, not store-operated, mutant channels. Our data suggest that the dilated pore of 2-APB–activated Orai3 is lined by TM1 residues, but also allows for TM3 E165 to approach the central axis of the channel that forms the conducting pathway, or pore.  相似文献   

8.
Ca2+ (calcium) homoeostasis and signalling rely on physical contacts between Ca2+ sensors in the ER (endoplasmic reticulum) and Ca2+ channels in the PM (plasma membrane). STIM1 (stromal interaction molecule 1) and STIM2 Ca2+ sensors oligomerize upon Ca2+ depletion in the ER lumen, contact phosphoinositides at the PM via their cytosolic lysine (K)-rich domains, and activate Ca2+ channels. Differential sensitivities of STIM1 and STIM2 towards ER luminal Ca2+ have been studied but responses towards elevated cytosolic Ca2+ concentration and the mechanism of lipid binding remain unclear. We found that tetramerization of the STIM1 K-rich domain is necessary for efficient binding to PI(4,5)P2-containing PM-like liposomes consistent with an oligomerization-driven STIM1 activation. In contrast, dimerization of STIM2 K-rich domain was sufficient for lipid binding. Furthermore, the K-rich domain of STIM2, but not of STIM1, forms an amphipathic α-helix. These distinct features of the STIM2 K-rich domain cause an increased affinity for PI(4,5)P2, consistent with the lower activation threshold of STIM2 and a function as regulator of basal Ca2+ levels. Concomitant with higher affinity for PM lipids, binding of CaM (calmodulin) inhibited the interaction of the STIM2 K-rich domain with liposomes in a Ca2+ and PI(4,5)P2 concentration-dependent manner. Therefore we suggest that elevated cytosolic Ca2+ concentration down-regulates STIM2-mediated ER–PM contacts via CaM binding.  相似文献   

9.
Ca2+ entry through store-operated Ca2+ release-activated Ca2+ (CRAC) channels is an essential trigger for lymphocyte activation and proliferation. The recent identification of Orai1 as a key CRAC channel pore subunit paves the way for understanding the molecular basis of Ca2+ selectivity, ion permeation, and regulation of CRAC channels. Previous Orai1 mutagenesis studies have indicated that a set of conserved acidic amino acids in trans membrane domains I and III and in the I–II loop (E106, E190, D110, D112, D114) are essential for the CRAC channel's high Ca2+ selectivity. To further dissect the contribution of Orai1 domains important for ion permeation and channel gating, we examined the role of these conserved acidic residues on pore geometry, properties of Ca2+ block, and channel regulation by Ca2+. We find that alteration of the acidic residues lowers Ca2+ selectivity and results in striking increases in Cs+ permeation. This is likely the result of enlargement of the unusually narrow pore of the CRAC channel, thus relieving steric hindrance for Cs+ permeation. Ca2+ binding to the selectivity filter appears to be primarily affected by changes in the apparent on-rate, consistent with a rate-limiting barrier for Ca2+ binding. Unexpectedly, the mutations diminish Ca2+-mediated fast inactivation, a key mode of CRAC channel regulation. The decrease in fast inactivation in the mutant channels correlates with the decrease in Ca2+ selectivity, increase in Cs+ permeability, and enlargement of the pore. We propose that the structural elements involved in ion permeation overlap with those involved in the gating of CRAC channels.  相似文献   

10.
Upon endoplasmic reticulum Ca2+ store depletion, Orai channels in the plasma membrane are activated directly by endoplasmic reticulum-resident STIM proteins to generate the Ca2+-selective, Ca2+ release-activated Ca2+ (CRAC) current. After the molecular identification of Orai, a plethora of functional and biochemical studies sought to compare Orai homologs, determine their stoichiometry, identify structural domains responsible for the biophysical fingerprint of the CRAC current, identify the physiological functions, and investigate Orai homologs as potential therapeutic targets. Subsequently, the solved crystal structure of Drosophila Orai (dOrai) substantiated many findings from structure-function studies, but also revealed an unexpected hexameric structure. In this review, we explore Orai channels as elucidated by functional and biochemical studies, analyze the dOrai crystal structure and its implications for Orai channel function, and present newly available information from molecular dynamics simulations that shed light on Orai channel gating and permeation.  相似文献   

11.
Ca2+ signals through store-operated Ca2+ (SOC) channels, activated by the depletion of Ca2+ from the endoplasmic reticulum, regulate various physiological events. Orai1 is the pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channel, the best characterized SOC channel. Orai1 is activated by stromal interaction molecule (STIM) 1, a Ca2+ sensor located in the endoplasmic reticulum. Orai1 and STIM1 are crucial for SOC channel activation, but the molecular mechanisms regulating Orai1 function are not fully understood. In this study, we demonstrate that protein kinase C (PKC) suppresses store-operated Ca2+ entry (SOCE) by phosphorylation of Orai1. PKC inhibitors and knockdown of PKCβ both resulted in increased Ca2+ influx. Orai1 is strongly phosphorylated by PKC in vitro and in vivo at N-terminal Ser-27 and Ser-30 residues. Consistent with these results, substitution of endogenous Orai1 with an Orai1 S27A/S30A mutant resulted in increased SOCE and CRAC channel currents. We propose that PKC suppresses SOCE and CRAC channel function by phosphorylation of Orai1 at N-terminal serine residues Ser-27 and Ser-30.  相似文献   

12.
Paramecium Na+ channels, which were Ca2+-calmodulin activated, were studied in the inside-out mode of patch clamp. After excision of the membrane patch, they were active in the presence of 10–5 to 10–3 m Ca2+ in the bath. They became much less active in the presence of 10–6 m Ca2+, and their activity subsided completely at 10–8 m Ca2+. A Hill plot showed a dissociation constant of 6 m for Ca2+ binding. This dissociation constant shifted to a submicromolar range in the presence of 1 mm Mg2+. The channels also exhibited a mild voltage dependence. When exposed to 10–8 m Ca2+ for an extended period of 2–4 min, channels were further inactivated even after bath Ca2+ was restored to 10–4 m. Whereas neither high voltage (+100 mV) nor high Ca2+ (10–3 m) was effective in reactivation of the inactive channels, addition of Paramecium wild-type calmodulin together with high Ca2+ to the bath restored channel activity without a requirement of additional Mg2+ and metabolites such as ATP. The channels reactivated by calmodulin had the same ion conductance, ion selectivity and Ca2+ sensitivity as those prior to inactivation. These inactivation and reactivation of the channels could be repeated, indicating that the direct calmodulin effect on the Na+ channel was reversible. Thus, calmodulin is a physiological factor critically required for Na+ channel activation, and is the Ca2+ sensor of the Na+-channel gating machinery.We thank C. Kung for his kind support, and A. Boileau for critical reading. Supported by grants from National Institutes of Health GM 22714-20 and 36386-09.  相似文献   

13.
In vertebrate olfactory receptor neurons (ORNs), odorant-induced activation of the transduction cascade culminates in production of cyclic AMP, which opens cyclic nucleotide–gated channels in the ciliary membrane enabling Ca2+ influx. The ensuing elevation of the intraciliary Ca2+ concentration opens Ca2+-activated Cl channels, which mediate an excitatory Cl efflux from the cilia. In order for the response to terminate, the Cl channel must close, which requires that the intraciliary Ca2+ concentration return to basal levels. Hitherto, the extrusion of Ca2+ from the cilia has been thought to depend principally on a Na+–Ca2+ exchanger.In this study, we show using simultaneous suction pipette recording and Ca2+-sensitive dye fluorescence measurements that in fire salamander ORNs, withdrawal of external Na+ from the solution bathing the cilia, which incapacitates Na+–Ca2+exchange, has only a modest effect on the recovery of the electrical response and the accompanying decay of intraciliary Ca2+ concentration. In contrast, exposure of the cilia to vanadate or carboxyeosin, a manipulation designed to block Ca2+-ATPase, has a substantial effect on response recovery kinetics. Therefore, we conclude that Ca2+-ATPase contributes to Ca2+ extrusion in ORNs, and that Na+–Ca2+exchange makes only a modest contribution to Ca2+ homeostasis in this species.  相似文献   

14.
Effects of internal Sr2+ on the activity of large-conductance Ca2+-activated K+ channels were studied in inside-out membrane patches from goldfish saccular hair cells. Sr2+ was approximately one-fourth as potent as Ca2+ in activating these channels. Although the Hill coefficient for Sr2+ was smaller than that for Ca2+, maximum open-state probability, voltage dependence, steady state gating kinetics, and time courses of activation and deactivation of the channel were very similar under the presence of equipotent concentrations of Ca2+ and Sr2+. This suggests that voltage-dependent activation is partially independent of the ligand. Internal Sr2+ at higher concentrations (>100 μM) produced fast and slow blockade both concentration and voltage dependently. The reduction in single-channel amplitude (fast blockade) could be fitted with a modified Woodhull equation that incorporated the Hill coefficient. The dissociation constant at 0 mV, the Hill coefficient, and zd (a product of the charge of the blocking ion and the fraction of the voltage difference at the binding site from the inside) in this equation were 58–209 mM, 0.69–0.75, 0.45–0.51, respectively (n = 4). Long shut events (slow blockade) produced by Sr2+ lasted ∼10–200 ms and could be fitted with single-exponential curves (time constant, τl−s) in shut-time histograms. Durations of burst events, periods intercalated by long shut events, could also be fitted with single exponentials (time constant, τb). A significant decrease in τb and no large changes in τl−s were observed with increased Sr2+ concentration and voltage. These findings on slow blockade could be approximated by a model in which single Sr2+ ions bind to a blocking site within the channel pore beyond the energy barrier from the inside, as proposed for Ba2+ blockade. The dissociation constant at 0 mV and zd in the Woodhull equation for this model were 36–150 mM and 1–1.8, respectively (n = 3).  相似文献   

15.
Stromal interaction molecule 1 (STIM1) is a widely expressed protein that functions as the endoplasmic reticulum (ER) Ca2+ sensor and activator of Orai1 channels. In resting cells with replete Ca2+ stores, an inhibitory clamp formed by the coiled-coil 1 (CC1) domain interacting with the CRAC-activation domain (CAD) of STIM1 helps keep STIM1 in a quiescent state. Following depletion of ER Ca2+ stores, the brake is released, allowing CAD to extend away from the ER membrane and enabling it to activate Orai1 channels. However, the molecular determinants of CC1–CAD interactions that enforce the inhibitory clamp are incompletely understood. Here, we performed Ala mutagenesis in conjunction with live-cell FRET analysis to examine residues in CC1 and CAD that regulate the inhibitory clamp. Our results indicate that in addition to previously identified hotspots in CC1⍺1 and CC3, several hydrophobic residues in CC2 and the apex region of CAD are critical for CC1–CAD interactions. Mutations in these residues loosen the CC1-CAD inhibitory clamp to release CAD from CC1 in cells with replete Ca2+ stores. By contrast, altering the hydrophobic residues L265 and L273 strengthens the clamp to prevent STIM1 activation. Inclusion of the inactivation domain of STIM1 helps stabilize CC1–CAD interaction in several mutants to prevent spontaneous STIM1 activation. In addition, R426C, a human disease–linked mutation in CC3, affects the clamp but also impairs Orai1 binding to inhibit CRAC channel activation. These results identify the CC2, apex, and inactivation domain regions of STIM1 as important determinants of STIM1 activation.  相似文献   

16.
Store-operated Ca2+ entry (SOCE) due to activation of Ca2+ release-activated Ca2+ (CRAC) channels leads to sustained elevation of cytoplasmic Ca2+ and activation of lymphocytes. CRAC channels consisting of four pore-forming Orai1 subunits are activated by STIM1, an endoplasmic reticulum Ca2+ sensor that senses intracellular store depletion and migrates to plasma membrane proximal regions to mediate SOCE. One of the fundamental properties of CRAC channels is their Ca2+-dependent fast inactivation. To identify the domains of Orai1 involved in fast inactivation, we have mutated residues in the Orai1 intracellular loop linking transmembrane segment II to III. Mutation of four residues, V151SNV154, at the center of the loop (MutA) abrogated fast inactivation, leading to increased SOCE as well as higher CRAC currents. Point mutation analysis identified five key amino acids, N153VHNL157, that increased SOCE in Orai1 null murine embryonic fibroblasts. Expression or direct application of a peptide comprising the entire intracellular loop or the sequence N153VHNL157 blocked CRAC currents from both wild type (WT) and MutA Orai1. A peptide incorporating the MutA mutations had no blocking effect. Concatenated Orai1 constructs with four MutA monomers exhibited high CRAC currents lacking fast inactivation. Reintroduction of a single WT monomer (MutA-MutA-MutA-WT) was sufficient to fully restore fast inactivation, suggesting that only a single intracellular loop can block the channel. These data suggest that the intracellular loop of Orai1 acts as an inactivation particle, which is stabilized in the ion permeation pathway by the N153VHNL157 residues. These results along with recent reports support a model in which the N terminus and the selectivity filter of Orai1 as well as STIM1 act in concert to regulate the movement of the intracellular loop and evoke fast inactivation.  相似文献   

17.
18.
19.
Four glutamate residues residing at corresponding positions within the four conserved membrane-spanning repeats of L-type Ca2+ channels are important structural determinants for the passage of Ca2+ across the selectivity filter. Mutation of the critical glutamate in Repeat III in the a1S subunit of the skeletal L-type channel (Cav1.1) to lysine virtually eliminates passage of Ca2+ during step depolarizations. In this study, we examined the ability of this mutant Cav1.1 channel (SkEIIIK) to conduct inward Na+ current. When 150 mM Na+ was present as the sole monovalent cation in the bath solution, dysgenic (Cav1.1 null) myotubes expressing SkEIIIK displayed slowly-activating, non-inactivating, nifedipine-sensitive inward currents with a reversal potential (45.6 ± 2.5 mV) near that expected for Na+. Ca2+ block of SkEIIIK-mediated Na+ current was revealed by the substantial enhancement of Na+ current amplitude after reduction of Ca2+ in the external recording solution from 10 mM to near physiological 1 mM. Inward SkEIIIK-mediated currents were potentiated by either ±Bay K 8644 (10 mM) or 200-ms depolarizing prepulses to +90 mV. In contrast, outward monovalent currents were reduced by ±Bay K 8644 and were unaffected by strong depolarization, indicating a preferential potentiation of inward Na+ currents through the mutant Cav1.1 channel. Taken together, our results show that SkEIIIK functions as a non-inactivating, junctionally-targeted Na+ channel when Na+ is the sole monvalent cation present and urge caution when interpreting the impact of mutations designed to ablate Ca2+ permeability mediated by CaV channels on physiological processes that extend beyond channel gating and permeability.  相似文献   

20.
Ca2+ channels play an important role in the development of different types of cancer, and considerable progress has been made to understand the pathophysiological mechanisms underlying the role of Ca2+ influx in the development of different cancer hallmarks. Orai1 is among the most ubiquitous and multifunctional Ca2+ channels. Orai1 mediates the highly Ca2+-selective Ca2+ release-activated current (ICRAC) and participates in the less Ca2+-selective store-operated current (ISOC), along with STIM1 or STIM1 and TRPC1, respectively. Furthermore, Orai1 contributes to a variety of store-independent Ca2+ influx mechanisms, including the arachidonate-regulated Ca2+ current, together with Orai3 and the plasma membrane resident pool of STIM1, as well as the constitutive Ca2+ influx processes activated by the secretory pathway Ca2+-ATPase-2 (SPCA2) or supported by physical and functional interaction with the small conductance Ca2+-activated K+ channel 3 (SK3) or the voltage-dependent Kv10.1 channel. This review summarizes the current knowledge concerning the store-independent mechanisms of Ca2+ influx activation through Orai1 channels and their role in the development of different cancer features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号