首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monolayers of binary mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and asialo-(GA1), disialo-(GD1b) and trisialo-(GT1b) gangliosides were used to determine the effect of ganglioside headgroup charge and geometry on its interactions with the neighboring zwitterionic lipid. Surface pressure versus molecular area isotherm measurements along with concurrent fluorescence microscopy of the monolayers at the air-water interface were complemented with atomic force microscopy imaging of monolayers deposited on solid substrates. Results were used to further develop a proposed geometric packing model that the complementary geometry of DPPC and monosialoganglioside GM1 headgroups affects their close molecular packing, inducing condensation of the layer at small mol % of ganglioside. For GA1, GD1b, and GT1b, a similar condensing effect, followed by a fluidizing effect is seen that varies with glycosphingolipid concentration, but results do not directly follow from geometric arguments because less DPPC is needed to condense ganglioside molecules with larger cross-sectional areas. The variations in critical packing mole ratios can be explained by global effects of headgroup charge and resultant dipole moments within the monolayer. Atomic force microscopy micrographs further support the model of ganglioside-induced DPPC condensation with condensed domains composed of a striped phase of condensed DPPC and DPPC/ganglioside geometrically packed complexes at low concentrations.  相似文献   

2.
Monolayers of binary mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and asialo-(GA1), disialo-(GD1b) and trisialo-(GT1b) gangliosides were used to determine the effect of ganglioside headgroup charge and geometry on its interactions with the neighboring zwitterionic lipid. Surface pressure versus molecular area isotherm measurements along with concurrent fluorescence microscopy of the monolayers at the air-water interface were complemented with atomic force microscopy imaging of monolayers deposited on solid substrates. Results were used to further develop a proposed geometric packing model that the complementary geometry of DPPC and monosialoganglioside GM1 headgroups affects their close molecular packing, inducing condensation of the layer at small mol % of ganglioside. For GA1, GD1b, and GT1b, a similar condensing effect, followed by a fluidizing effect is seen that varies with glycosphingolipid concentration, but results do not directly follow from geometric arguments because less DPPC is needed to condense ganglioside molecules with larger cross-sectional areas. The variations in critical packing mole ratios can be explained by global effects of headgroup charge and resultant dipole moments within the monolayer. Atomic force microscopy micrographs further support the model of ganglioside-induced DPPC condensation with condensed domains composed of a striped phase of condensed DPPC and DPPC/ganglioside geometrically packed complexes at low concentrations.  相似文献   

3.
Effects of Cell Density on Lipids of Human Glioma and Fetal Neural Cells   总被引:2,自引:2,他引:0  
Abstract: Gangliosides, phospholipids, and cholesterol of human glioma (12-18) and fetal neural cells (CH) were analyzed at specified cell densities, from sparse to confluent. Total ganglioside sialic acid, phospholipid phosphorus, and cholesterol increased in the glioma cells on a per cell, mg protein, or mg total lipid basis two- to threefold as cell density increased 25-fold. These same three constituents in the fetal cells increased with cell density on a per cell and mg protein basis but not on a per mg total lipid basis. In glioma cells, the di- and trisialogangliosides (GD2+ GDlb+ GT1) increased from 1–2% of total ganglioside sialic acid at sparse densities to 7–8% at intermediate (logarithmic phase) densities to 10–13% at confluent densities. The set of simpler gangliosides (GM4+ GM3+ GM2) decreased from 50% of total ganglioside sialic acid at sparse glioma cell densities, to 36% at intermediate and 30% at confluent densities. In the fetal neural cells, the set of gangliosides (GM4+ GM3+ GM2) had about 48% of total ganglioside sialic acid in both sparse and confluent preparations. The fetal cells were twofold higher in GM3 (32.4 ± 2.1%) than the glioma cells (16.8 ± 1.6%), but lower in GMt (9.1 ± 0.9% versus 18.2 ± 1.8%), cell densities notwithstanding. Confluent cell preparations of both cell lines were consistently higher in ethanolamine plasmalogen than sparse cells. We conclude that in these two neural cell lines quantitative changes in ganglioside and phospholipid species occurred correlatively as cell densities increased. Higher glioma cell densities were associated with greater proportions of complex ganglioside species. These changes in cell membrane constituents during growth may result from cell contact and may indicate a role for them in cell growth regulation and/or differentiation.  相似文献   

4.
Abstract: Ganglioside composition of rat trigeminal nerve was studied during development in order to understand the changes that occur as a result of cellular differentiation in the nerve. The ganglioside composition of the trigeminal nerve was entirely different from that of brain. The major gangliosides in adult trigeminal nerve were GM3, GD3, and LM1 (sialosyl-lactoneotetraosylceramide or sialosylparagloboside). The structure of LM1 and other gangliosides was established by enzymatic degradation and by analysis of the products of acid hydrolysis. At 2 days after birth, when the Schwann cells were immature, GM3 and GD3 were the major gangliosides in the nerve, 50 and 18 mol %, respectively. As the nerve developed and Schwann cells proliferated and myelinated the axons, the mol % of GM3 and GD3 reduced and that of LM1 steadily increased. Polysialogangliosides did not change drastically with nerve development. The rate of deposition of LM1 in the nerve with age was very similar to that of myelin marker lipids, cerebrosides, and sulfatides; thus, deposition appears to be localized mainly in the rat nerve myelin. LM1 also had long-chain fatty acids 22:0 and 24:0, which are not usually found in CNS gangliosides. The ganglioside pattern of the rat trigeminal nerve was very similar to that of rat sciatic nerve, but was different from that of rabbit and chicken sciatic nerve. The activity of the two key enzymes involved in the metabolism of GM3, viz., CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase and UDP-N-acetylgalactosamine:GM3-N-acetylgalactosaminyltransferase, was also studied during development of the nerve and brain. The developmental profiles of both enzymes were consistent with the amounts of GM3 present in the nerve.  相似文献   

5.
Gangliosides from beef brain have been spin-labeled using two different attaching groups and employed to investigate the physical nature of ganglioside behaviour in membranes. Results obtained using EPR spectroscopy indicate that, in phosphatidylcholine bilayers at physiological pH, ganglioside oligosaccharide chains are quite mobile and show a measurable tendency towards cooperative interaction amongst themselves. We suggest that the source of this interaction is the formation of H-bonds between sugar residues in adjacent ganglioside molecules. We present evidence that physiological (extracellular fluid) levels of Ca2+ and Mg2+ lead to cross-linking and condensing of ganglioside headgroups by complexing sialic acid carboxyl residues. Ganglioside headgroup interactions are not very sensitive to changes in the buffer ionic strength, suggesting that ionic interactions are of minor importance. We have found no measurable tendency for headgroup carbohydrate to penetrate hydrophobic regions of lipid bilayers. EPR spectroscopy was also used to follow the interaction of spin-labeled gangliosides with the glycoprotein, glycophorin, and with intact BHK cells.We suggest that these carbohydrate-based interactions should contribute significantly to the properties of the eucaryotic cell glycocalyx. We predict that laterally mobile carbohydrate-bearing components of cell surfaces will show a tendency to cluster about complex glycoprotein arrays, especially if the species involved bear accessible carboxylic acid functions.  相似文献   

6.
Phosphoinositides like phosphatidylinositol 4,5-bisphosphate (PIP2) are negatively charged lipids that play a pivotal role in membrane trafficking, signal transduction, and protein anchoring. We have designed a force field for the PIP2 headgroup using quantum mechanical methods and characterized its properties inside a lipid bilayer using molecular dynamics simulations. Macroscopic properties such as area/headgroup, density profiles, and lipid order parameters calculated from these simulations agree well with the experimental values. However, microscopically, the PIP2 introduces a local perturbation of the lipid bilayer. The average PIP2 headgroup orientation of 45° relative to the bilayer normal induces a unique, distance-dependent organization of the lipids that surround PIP2. The headgroups of these lipids preferentially orient closer to the bilayer normal. This perturbation creates a PIP2 lipid microdomain with the neighboring lipids. We propose that the PIP2 lipid microdomain enables the PIP2 to function as a membrane-bound anchoring molecule.  相似文献   

7.
Abstract

Molecular mechanics and molecular dynamics studies are performed to investigate the conformational preference of cell surface higher gangliosides (GT1A and GT1B) and their interaction with Cholera Toxin. The water mediated hydrogen bonding network exists between sugar residues in gangliosides. An integrated molecular modeling, molecular mechanics, and molecular dynamics calculation of cholera toxin complexed with GT1A and GT1B reveal that, the active site of cholera toxin can accommodate these higher gangliosides. Direct and water mediated hydrogen bonding interactions stabilize these binding modes and play an essential role in defining the order of specificity for different higher ganglioside towards cholera toxin. This study identifies that the binding site of cholera toxin is shallow and can accommodate a maximum of two NeuNAc residues. The NeuNAc binding site of cholera toxin may be crucial for the design of inhibitors that can prevent the infection of cholera.  相似文献   

8.
At the 2017 meeting of the Australian Society for Biophysics, we presented the combined results from two recent studies showing how hydronium ions (H3O+) modulate the structure and ion permeability of phospholipid bilayers. In the first study, the impact of H3O+ on lipid packing had been identified using tethered bilayer lipid membranes in conjunction with electrical impedance spectroscopy and neutron reflectometry. The increased presence of H3O+ (i.e. lower pH) led to a significant reduction in membrane conductivity and increased membrane thickness. A first-order explanation for the effect was assigned to alterations in the steric packing of the membrane lipids. Changes in packing were described by a critical packing parameter (CPP) related to the interfacial area and volume and shape of the membrane lipids. We proposed that increasing the concentraton of H3O+ resulted in stronger hydrogen bonding between the phosphate oxygens at the water–lipid interface leading to a reduced area per lipid and slightly increased membrane thickness. At the meeting, a molecular model for these pH effects based on the result of our second study was presented. Multiple μs-long, unrestrained molecular dynamic (MD) simulations of a phosphatidylcholine lipid bilayer were carried out and showed a concentration dependent reduction in the area per lipid and an increase in bilayer thickness, in agreement with experimental data. Further, H3O+ preferentially accumulated at the water–lipid interface, suggesting the localised pH at the membrane surface is much lower than the bulk bathing solution. Another significant finding was that the hydrogen bonds formed by H3O+ ions with lipid headgroup oxygens are, on average, shorter in length and longer-lived than the ones formed in bulk water. In addition, the H3O+ ions resided for longer periods in association with the carbonyl oxygens than with either phosphate oxygen in lipids. In summary, the MD simulations support a model where the hydrogen bonding capacity of H3O+ for carbonyl and phosphate oxygens is the origin of the pH-induced changes in lipid packing in phospholipid membranes. These molecular-level studies are an important step towards a better understanding of the effect of pH on biological membranes.  相似文献   

9.
The cloned C3H/10T1/2 mouse embryo cells contained a complex pattern of gangliosides. Two cloned chemical transformants obtained from the C3H/10T1/2 cell line by treatment with 7,12-dimethylbenz(a) anthracene (DMBA-TCL1) and 3-methylcholanthrene (MCA-TCL15) also had complex ganglioside patterns; but the transformants had increased levels of the simplest ganglioside, N-acetylneuraminylgalactosylglucosylceramide (GM3), and reduced levels of more complex gangliosides. Incorporation of [14C]glucosamine into gangliosides, as cell-to-cell contact increased in C3H/10T1/2 cells, showed that GM3 synthesis was decreased and that the synthesis of the more complex ganglioside N-acetylneuraminylgalactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactosylglucosylceramide (GD1a) was increased. In the two transformants the percentage each individual ganglioside was of total labeled gangliosides was only slightly altered with changing cell density. Turnover of [14C]glucosamine-labeled gangliosides, as cell density increased, was approximately equal in C3H/10T1/2 cells and MCA-TCL15 cells, but more rapid in the DMBA-TCL1 cells. Most individual gangliosides turned over at about the same rate in the respective cell lines. However, GD1a increased slightly as a percentage of total labeled gangliosides with increasing cell density in both C3H/10T1/2 cells and transformed cells. The labeling data indicated that the majority of GD1a synthesis was de novo and only a small part occurred by transfer of sialyl or glycosyl residues to simpler gangliosides or catabolism of more complex gangliosides already present in the outer membrane. Exogenous complex gangliosides added to the medium were more effective inhibitors of DMBA-TCL1 cell growth than of C3H/10T1/2 cell growth. Furthermore, gangliosides added to exponentially growing C3H/10T1/2 and DMBA-TCL1 cells caused both cell lines to incorporate a greater percentage of [14C]glucosamine into gangliosides more complex than GM3.  相似文献   

10.
M Masserini  P Palestini  E Freire 《Biochemistry》1989,28(12):5029-5034
The thermotropic behavior of dipalmitoylphosphatidylcholine large unilamellar vesicles containing gangliosides has been studied by high-sensitivity heating and cooling differential scanning calorimetry. These studies have been directed to identify and evaluate the influence of both the ganglioside lipidic portion and oligosaccharide moiety on the physical properties of phospholipid bilayers containing gangliosides. The influence of the ganglioside lipidic portion has been evaluated by studying the behavior of vesicles containing different GD1a molecular species carrying homogeneous lipid moieties (C20 or C18 sphingosine or sphinganine and stearic acid). The influence of the ganglioside saccharide portion was evaluated by investigating the thermotropic behavior of vesicles containing different gangliosides (GM1, Fuc-GM1, GD1a, GT1b) carrying the same homogeneous long-chain base moiety (C20 sphingosine and stearic acid). These studies, in conjunction with previous studies using homogeneous lipidic portion ganglioside GM1 and phosphatidylcholines of various chain lengths [Masserini, M., & Freire, E. (1986) Biochemistry 25, 1043-1049], indicate that, for a given oligosaccharide composition, gangliosides exhibit lateral phase separation in an extent dependent upon the length and unsaturation difference between the ganglioside long-chain base and phosphatidylcholine acyl chains. For a given ganglioside lipidic composition the extent of phase separation is dependent upon the number of sugar units present in the glycolipid. The addition of Ca2+ induces or enhances phase separation in a manner dependent on the long-chain base and oligosaccharide composition. Cooling differential scanning calorimetry experiments showed that the ganglioside property to form aggregates within the membrane is independent of the initial physical state of the bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Exogenous gangliosides affect the angiogenic activity of fibroblast growth factor-2 (FGF-2), but their mechanism of action has not been elucidated. Here, a possible direct interaction of sialo-glycolipids with FGF-2 has been investigated. Size exclusion chromatography demonstrates that native, but not heat-denatured, 125I-FGF-2 binds to micelles formed by gangliosides GT1b, GD1b, or GM1. Also, gangliosides protect native FGF-2 from trypsin digestion at micromolar concentrations, the order of relative potency being GT1b > GD1b > GM1 = GM2 = sulfatide > GM3 = galactosyl-ceramide, whereas asialo-GM1, neuraminic acid, and N-acetylneuramin-lactose were ineffective. Scatchard plot analysis of the binding data of fluorochrome-labeled GM1 to immobilized FGF-2 indicates that FGF–2/GM1 interaction occurs with a Kd equal to 6 μM. This interaction is inhibited by the sialic acid-binding peptide mastoparan and by the synthetic fragments FGF-2(112–129) and, to a lesser extent, FGF-2(130–155), whereas peptides FGF-2(10–33), FGF-2(39–59), FGF-2(86–96), and the basic peptide HIV-1 Tat(41–60) were ineffective. These data identify the COOH terminus of FGF-2 as a putative ganglioside-binding region. Exogenous gangliosides inhibit the binding of 125I-FGF-2 to high-affinity tyrosine-kinase FGF-receptors (FGFRs) of endothelial GM 7373 cells at micromolar concentrations. The order of relative potency was GT1b > GD1b > GM1 > sulfatide a = sialo-GM1. Accordingly, GT1b,GD1b, GM1, and GM2, but not GM3 and asialo-GM1, prevent the binding of 125I-FGF-2 to a soluble, recombinant form of extracellular FGFR-1. Conversely, the soluble receptor and free heparin inhibit the interaction of fluorochrome-labeled GM1 to immobilized FGF-2. In agreement with their FGFR antagonist activity, free gangliosides inhibit the mitogenic activity exerted by FGF-2 on endothelial cells in the same range of concentrations. Also in this case, GT1b was the most effective among the gangliosides tested while asialo-GM1, neuraminic acid, N-acetylneuramin-lactose, galactosyl-ceramide, and sulfatide were ineffective. In conclusion, the data demonstrate the capacity of exogenous gangliosides to interact with FGF-2. This interaction involves the COOH terminus of the FGF-2 molecule and depends on the structure of the oligosaccharide chain and on the presence of sialic acid residue(s) in the ganglioside molecule. Exogenous gangliosides act as FGF-2 antagonists when added to endothelial cell cultures. Since gangliosides are extensively shed by tumor cells and reach elevated levels in the serum of tumor-bearing patients, our data suggest that exogenous gangliosides may affect endothelial cell function by a direct interaction with FGF-2, thus modulating tumor neovascularization.  相似文献   

12.
A light scattering study of the effect of mixing in aqueous solution two gangliosides, GM2 and GT1b, having different hydrophilic headgroups and similar lipid moieties is presented. Mixed micelle formation with spatial segregation of one ganglioside with respect to the other was observed. It is also shown that segregation is a spontaneous phenomenon which is explainable only in terms of simple geometrical arguments, that is by the fact that the large headgroup of GT1b provides the lipidic core of the aggregate with a better shielding from water in the highly curved regions than the smaller headgroup of GM2 can do. This finding may be of help in understanding the behaviour of gangliosides in artificial and natural membranes.  相似文献   

13.
The lipid composition of several teratocarcinoma cell lines has been examined by biochemical and immunological methods in order to identify properties that might be correlated with the state of cell differentiation. The data indicate qualitative and quantitative changes in the phospholipid, cholesterol, and glycolipid composition. In particular, the ratios of cholesterol/phospholipid and of sphingomyelin/phosphatidylcholine are higher in differentiated cells. Gangliosides with short glycosidic chains (GM3 and GD3) are characteristic of undifferentiated, multipotent, embryonal carcinoma cell lines. More complex gangliosides (GM1 and GD1a) appear early during the course of differentiation. Each differentiated cell line presents a unique ganglioside map. Results are tentatively correlated with a stabilization of the membrane bilayer in differentiated cell lines, whereas a more fluid state of the membrane in embryonal carcinoma cell lines would allow maximal flexibility. Subtle differences in ganglioside composition among embryonal carcinoma cell lines are discussed in relation with their potentialities, and their developmental age.  相似文献   

14.
Gangliosides are well-known regulators of cell differentiation through specific interactions with growth factor receptors. Previously, our group provided the first evidence about stable association of ganglioside GM3 to EGFR/ErbB2 heterodimers in mammary epithelial cells. Goals of the present study were to better define the role of gangliosides in EGFR/ErbB2 heterodimerization and receptor phosphorylation events and to analyze their involvement in mammary cell differentiation. Experiments have been conducted using the ceramide analogue (+/−)-treo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP), which inhibits ceramide glucosyltransferase resulting in the endogenous ganglioside depletion, and the lactogenic hormone mix DIP (dexamethasone, insulin, prolactin), which induces cell differentiation and β-casein mRNA synthesis. In addition, treatments of ganglioside-depleted cells with exogenous GM3 have been carried out to ascertain the specific involvement of this ganglioside. Results from co-immunoprecipitation and Western blot experiments have shown that the endogenous ganglioside depletion resulted in the disappearance of SDS-stable EGFR/ErbB2 heterodimers and in the appearance of tyrosine-phosphorylated EGFR also in the absence of EGF stimulation; exogenous GM3 added in combination with [D]-PDMP reversed both these effects. In contrast, the tyrosine phosphorylation of ErbB2 in ganglioside-depleted cells occurred only after EGF stimulation. Moreover, when ganglioside-depleted cells were treated with DIP in absence of EGF, β-casein gene expression appeared strongly down-regulated, and β-casein mRNA levels were partially restored by exogenous GM3 treatment. Altogether, although the involvement of other ganglioside species cannot be excluded, these findings sustain the ganglioside GM3 as an essential molecule for EGFR/ErbB2 heterodimer stability and important regulator of EGFR tyrosine phosphorylation, but it is not crucial for tyrosine phosphorylation of the heterodimerization partner ErbB2. Moreover, modulation of EGFR phosphorylation may explain how gangliosides contribute to regulate the lactogenic hormone-induced mammary cell differentiation.  相似文献   

15.
Gangliosides from beef brain have been spin-labeled using two different attaching groups and employed to investigate the physical nature of ganglioside behaviour in membranes. Results obtained using EPR spectroscopy indicate that, in phosphatidylcholine bilayers at physiological pH, ganglioside oligosaccharide chains are quite mobile and show a measurable tendency towards cooperative interaction amongst themselves. We suggest that the source of this interaction is the formation of H-bonds between sugar residues in adjacent ganglioside molecules. We present evidence that physiological (extracellular fluid) levels of Ca2+ and Mg2+ lead to cross-linking and condensing of ganglioside headgroups by complexing sialic acid carboxyl residues. Ganglioside headgroup interactions are not very sensitive to changes in the buffer ionic strength, suggesting that ionic interactions are of minor importance. We have found no measurable tendency for headgroup carbohydrate to penetrate hydrophobic regions of lipid bilayers. EPR spectroscopy was also used to follow the interaction of spin-labeled gangliosides with the glycoprotein, glycophorin, and with intact BHK cells. We suggest that these carbohydrate-based interactions should contribute significantly to the properties of the eucaryotic cell glycocalyx. We predict that laterally mobile carbohydrate-bearing components of cell surface will show a tendency to cluster about complex glycoprotein arrays, especially if the species involved bear accessible carboxylic acid functions.  相似文献   

16.
As part of a program to investigate the behavior and interactions of glycolipids in biological membranes we have synthesized spin-labeled derivatives of 2 families of carbohydrate-bearing ceramides (glycosphingolipids): simple neutral glycolipids and gangliosides. Galactosyl ceramide has been synthesized with the spin label at 3 different positions on the fatty acid chain. It has been studied in bilayers of various different lipids and lipid mixtures and compared to the corresponding phospholipid spin labels. Considerable similarity has been found between the behavior of galactosyl ceramide and phosphatidylcholine. These similarities include a negligible flip-flop rate, a flexibility gradient in the acyl chains, and exclusion from phosphatidylserine domains in the face of a Ca2+-induced lateral phase separation. Evidence for dramatic clustering of simple neutral glycolipids has not been found. Glycosphingolipids do seem to have the capacity to increase rigidity in fluid lipid bilayers. A general procedure has been developed for covalent attachment of a nitroxide spin label to the headgroup region of complex glycolipids such as gangliosides. Studies of beef brain gangliosides labeled in this manner and incorporated into bilayers of phosphatidylcholine indicate that the headgroup oligosaccharides are in rapid, random motion as opposed to being in any way immobilized. This headgroup mobility depends very little on the fluidity or rigidity of the bilayer. However, headgroup mobility decreases, perhaps as a result of cooperative headgroup interactions, with increasing bilayer concentration of unlabeled ganglioside.  相似文献   

17.
The influence of different gangliosides (GM1, GD1a, GT1b) on the fluidity and surface dynamics of phosphatidylcholine small unilamellar vesicles was studied by electron paramagnetic resonance. 5-and 16-nitroxystearic acid, sounding respectively the region close to the surface and that close to the hydrophobic core of the vesicle, were employed as spin-label probes. The signals released by 5-nitroxystearic acid showed that the presence of gangliosides reduced the mobility of the hydrocarbon chains around the probe. The effect increased by increasing ganglioside concentration, and diminished from GM1 to GD1a and GT1b. The decrease of membrane fluidity was also monitored by the 16-nitroxystearic acid probe. On addition of Ca2+ the fluidity of ganglioside-containing vesicles (as signalled by the 5-nitroxystearic acid probe) promptly decreased, thereafter returning slowly to the original value. It is suggested that gangliosides cause strong side-side head group interactions on the bilayer surface -between ganglioside oligosaccharide chains and between ganglioside and phosphatidylcholine polar portions - which lead the lipid chains to assembly in a more rigid fashion. The influence of Ca2+ is interpreted as due to lateral phase separation in the vesicle membrane. This phenomenon can be related to the formation or stabilization of ganglioside clusters on the vesicle surface.  相似文献   

18.
Gangliosides, highly expressed in the outer leaflet of plasmamembranes, mediate a variety of biological processes, includingcell-cell and cell-matrix interactions. We examined the effectsof exogenous gangliosides on intracellular Ca2+ mobilizationand functional responses in human platelets. Gangliosides (GM3and GM1) induced rapid and reversible elevation of intracellularCa2+ in fura2-loaded platelets in a concentration-dependentmanner. The Ca2+mobilizing effect of gangliosides was not mimickedby de-N-acetyl-GM3, lactosylceramide, or free sialic acid, suggestingthat structural integrity as ganglioside is essential for thiseffect. GM3 and GM1 also induced platelet shape change by themselvesand elicited aggregation in combination with epinephrine. Ourobservations suggest the involvement of ganglioside-activatedplatelets in atherosclerosis, in view of the high observed gangliosidelevels in atherosclerotic lesions of human aorta. de-N-acetyl-GM3 ganglioside GM3 intracellular Ca2+ mobilization platelet activation  相似文献   

19.
Abstract– Experimental rat neural tumors in offspring were induced transplacentally by a single injection of a chemical carcinogen, ethylnitrosourea, 20mg/kg body wt, in the tail vein of the mother. The ganglioside content and pattern in these tumors and the normal tissues from which the tumors originated are described. The ganglioside content in tumors was reduced, on wet tissue weight basis, compared to normal control. However, there was no significant difference of ganglioside content on dry weight or protein basis. Altered ganglioside composition was found in most of the neural tumors. In central nervous system tumors, there was some increase in GM3 and GT1b′ (nomenclature according to Svennerholm , 1963), a marked decrease in GM1 and some decrease in GD1a, but no apparent loss in GD1b. Extreme simplification of ganglioside pattern was seen in tumors originated from peripheral nervous system. Large accumulation of GM3 with concomitant loss of all the higher gangliosides was seen. GM3 from neurinomas as well as from normal gray matter was isolated and characterized. GM3 from neurinomas separated into two bands on thin layer chromatographic plates. Both these GM3 bands had identical sphingosine and carbohydrate composition but differed in their fatty acid composition. The fast moving band had 77% of the total fatty acids as C20:0 or longer chain while the slow moving band had only 22% of the long chain fatty acids. Normal gray matter GM3 had one major band containing 82% of and only 17% of the fatty acids as C20:0 or higher. It is suggested that in the tumor cells either the specificity of the enzyme cytidine monophosphate-N-acetyl neuraminic acid: ceramide dihexoside sialyltransferase for C18.0 fatty acid containing glycolipid was altered or that the compartmentation of precursor pools for the simpler glycolipids present in normal tissue did not exist in transformed cells.  相似文献   

20.
Lipid rafts, in biological membranes, are cholesterol-rich nanodomains that regulate many protein activities and cellular processes. Understanding the formation of the lipid-raft nanodomains helps us elucidate many complex interactions in the cell. In this study, the formation of lipid-raft nanodomains in a ternary palmitoyl-oleoyl-phosphatidylcholine/stearoyl-sphingomyelin/cholesterol (POPC/DPSM/Chol) lipid mixture, the most realistic surrogate model for biological membranes, has been successfully observed for the first time in-silico using microsecond timescale molecular dynamics simulations. The model reveals the formation of cholesterol-induced nanodomains with raft-like characteristics and their underlying mechanism: the cholesterol molecules segregate themselves into cholesterol nanodomains and then enrich the cholesterol-rich domain with sphingomyelin molecules to form a lipid raft thanks to the weak bonding of cholesterol with sphingomyelin. Besides, it is found that the increase in cholesterol concentration enhances the biophysical properties (e.g., bilayer thickness, area per lipid headgroup, and order parameter) of the lipid raft nanodomains. Such findings suggest that the POPC/DPSM/Chol bilayer is a suitable model to fundamentally extend the nanodomain evolution to investigate their lifetime and kinetics as well as to study protein-lipid interaction, protein-protein interaction, and selection of therapeutic molecules in the presence of lipid rafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号