共查询到20条相似文献,搜索用时 15 毫秒
1.
Mansi R. Khanna Floyd J. Mattie Kristen C. Browder Megan D. Radyk Stephanie E. Crilly Katelyn J. Bakerink Sandra L. Harper David W. Speicher Graham H. Thomas 《The Journal of biological chemistry》2015,290(2):706-715
The dominant paradigm for spectrin function is that (αβ)2-spectrin tetramers or higher order oligomers form membrane-associated two-dimensional networks in association with F-actin to reinforce the plasma membrane. Tetramerization is an essential event in such structures. We characterize the tetramerization interaction between α-spectrin and β-spectrins in Drosophila. Wild-type α-spectrin binds to both β- and βH-chains with high affinity, resembling other non-erythroid spectrins. However, α-specR22S, a tetramerization site mutant homologous to the pathological α-specR28S allele in humans, eliminates detectable binding to β-spectrin and reduces binding to βH-spectrin ∼1000-fold. Even though spectrins are essential proteins, α-spectrinR22S rescues α-spectrin mutants to adulthood with only minor phenotypes indicating that tetramerization, and thus conventional network formation, is not the essential function of non-erythroid spectrin. Our data provide the first rigorous test for the general requirement for tetramer-based non-erythroid spectrin networks throughout an organism and find that they have very limited roles, in direct contrast to the current paradigm. 相似文献
2.
The somatic muscles of Drosophila develop in a complex pattern that is repeated in each embryonic hemi-segment. During early development, progenitor cells fuse to form a syncytial muscle, which further differentiates via expression of muscle-specific factors that induce specific responses to external signals to regulate late-stage processes such as migration and attachment. Initial communication between somatic muscles and the epidermal tendon cells is critical for both of these processes. However, later establishment of attachments between longitudinal muscles at the segmental borders is largely independent of the muscle–epidermal attachment signals, and relatively little is known about how this event is regulated. Using a combination of null mutations and a truncated version of Sd that binds Vg but not DNA, we show that Vestigial (Vg) is required in ventral longitudinal muscles to induce formation of stable intermuscular attachments. In several muscles, this activity may be independent of Sd. Furthermore, the cell-specific differentiation events induced by Vg in two cells fated to form attachments are coordinated by Drosophila epidermal growth factor signaling. Thus, Vg is a key factor to induce specific changes in ventral longitudinal muscles 1–4 identity and is required for these cells to be competent to form stable intermuscular attachments with each other. 相似文献
3.
Background
Disheveled-associated activator of morphogenesis 1 (DAAM1) is a formin acting downstream of Wnt signaling that is important for planar cell polarity. It has been shown to promote proper cell polarization during embryonic development in both Xenopus and Drosophila. Importantly, DAAM1 binds to Disheveled (Dvl) and thus functions downstream of the Frizzled receptors. Little is known of how DAAM1 is localized and functions in mammalian cells. We investigate here how DAAM1 affects migration and polarization of cultured cells and conclude that it plays a key role in centrosome polarity.Methodology/Principal Findings
Using a specific antibody to DAAM1, we find that the protein localizes to the acto-myosin system and co-localizes with ventral myosin IIB-containing actin stress fibers. These fibers are particularly evident in the sub-nuclear region. An N-terminal region of DAAM1 is responsible for this targeting and the DAAM1(1-440) protein can interact with myosin IIB fibers independently of either F-actin or RhoA binding. We also demonstrate that DAAM1 depletion inhibits Golgi reorientation in wound healing assays. Wound-edge cells exhibit multiple protrusions characteristic of unpolarized cell migration. Finally, in U2OS cells lines stably expressing DAAM1, we observe an enhanced myosin IIB stress fiber network which opposes cell migration.Conclusions/Significance
This work highlights the importance of DAAM1 in processes underlying cell polarity and suggests that it acts in part by affecting the function of acto-myosin IIB system. It also emphasizes the importance of the N-terminal half of DAAM1. DAAM1 depletion strongly blocks centrosomal re-polarization, supporting the concept that DAAM1 signaling cooperates with the established Cdc42 associated polarity complex. These findings are also consistent with the observation that ablation of myosin IIB but not myosin IIA results in polarity defects downstream of Wnt signaling. The structure-function analysis of DAAM1 in cultured cells parallels more complex morphological events in the developing embryo. 相似文献4.
Multicellular tubes consist of polarized cells wrapped around a central lumen and are essential structures underlying many developmental and physiological functions. In Drosophila compound eyes, each ommatidium forms a luminal matrix, the inter-rhabdomeral space, to shape and separate the key phototransduction organelles, the rhabdomeres, for proper visual perception. In an enhancer screen to define mechanisms of retina lumen formation, we identified Actin5C as a key molecule. Our results demonstrate that the disruption of lumen formation upon the reduction of Actin5C is not linked to any discernible defect in microvillus formation, the rhabdomere terminal web (RTW), or the overall morphogenesis and basal extension of the rhabdomere. Second, the failure of proper lumen formation is not the result of previously identified processes of retinal lumen formation: Prominin localization, expansion of the apical membrane, or secretion of the luminal matrix. Rather, the phenotype observed with Actin5C is phenocopied upon the decrease of the individual components of non-muscle myosin II (MyoII) and its upstream activators. In photoreceptor cells MyoII localizes to the base of the rhabdomeres, overlapping with the actin filaments of the RTW. Consistent with the well-established roll of actomyosin-mediated cellular contraction, reduction of MyoII results in reduced distance between apical membranes as measured by a decrease in lumen diameter. Together, our results indicate the actomyosin machinery coordinates with the localization of apical membrane components and the secretion of an extracellular matrix to overcome apical membrane adhesion to initiate and expand the retinal lumen. 相似文献
5.
Influenza A virus buds through the apical plasma membrane, forming enveloped virus particles that can take the shape of pleomorphic spheres or vastly elongated filaments. For either type of virion, the factors responsible for separation of viral and cell membranes are not known. We find that cellular Rab11 (a small GTP-binding protein involved in endocytic recycling) and Rab11-family interacting protein 3 ([FIP3] which plays a role in membrane trafficking and regulation of actin dynamics) are both required to support the formation of filamentous virions, while Rab11 is additionally involved in the final budding step of spherical particles. Cells transfected with Rab11 GTP-cycling mutants or depleted of Rab11 or FIP3 content by small interfering RNA treatment lost the ability to form virus filaments. Depletion of Rab11 resulted in up to a 100-fold decrease in titer of spherical virus released from cells. Scanning electron microscopy of Rab11-depleted cells showed high densities of virus particles apparently stalled in the process of budding. Transmission electron microscopy of thin sections confirmed that Rab11 depletion resulted in significant numbers of abnormally formed virus particles that had failed to pinch off from the plasma membrane. Based on these findings, we see a clear role for a Rab11-mediated pathway in influenza virus morphogenesis and budding.Influenza A virus is a highly infectious respiratory pathogen, causing 3 to 5 million severe cases yearly while the recent H1N1 pandemic has spread to over 200 countries and resulted in over 15,000 WHO-confirmed deaths since its emergence in March 2009 (57). Influenza virus particles are enveloped structures that contain nine identified viral polypeptides. The lipid envelope is derived by budding from the apical plasma membrane and contains the viral integral membrane proteins hemagglutinin (HA) and neuraminidase (NA) as well as the M2 ion channel. Internally, virus particles contain a matrix protein (M1), small quantities of the NS2/NEP polypeptide, and eight genomic segments of negative-sense RNA that are separately encapsidated into ribonucleoprotein (RNP) particles by the viral nucleoprotein (NP) and tripartite polymerase complex (PB1, PB2, and PA). M1 is thought to form a link between the RNPs and the cytoplasmic tails of the viral membrane proteins though M2 may also play a role (39). The minimal viral protein requirements for budding are disputed; while initial studies suggested that M1 was the main driver of budding (21, 34), more recent work proposes that the glycoproteins HA and NA are responsible (8).Further complicating the analysis of influenza A virus budding is the observation that most strains of the virus form two distinct types of virions: spherical particles approximately 100 nm in diameter and much longer filamentous particles up to 30 μm in length (38). Of the viral proteins, M1 is the primary determinant of particle shape (3, 17) although other virus genes also play a role. It is also likely that host factors are involved in the process as cells with fully differentiated apical and basolateral membranes produce more filaments than nonpolarized cell types (42). While it is tempting to speculate that virus morphology and budding are regulated by the same cellular process, the fact that spherical budding occurs in the absence of an intact actin cytoskeleton while filament formation does not (42, 48) indicates some level of divergence in the mechanisms responsible for spherical and filamentous virion morphogenesis.The means by which viral and cellular membranes are separated are also unclear. Unlike many other enveloped viruses, including retroviruses (19, 36, 52) and herpes simplex virus (12), influenza A virus does not utilize the cellular endosomal sorting complex required for transport (ESCRT) pathway (5, 8). However, recent reports indicate that some viruses, including human cytomegalovirus (HCMV) (32), the hantavirus Andes virus (44), and respiratory syncytial virus (RSV) may employ a Rab11-mediated pathway during assembly and/or budding (4, 51). The Rab family of small GTPases is involved in targeting vesicle trafficking, mediating a wide range of downstream processes including endosomal trafficking and membrane fusion/fission events (reviewed in references 53 and 58). Rab11 is involved in trafficking proteins and vesicles between the trans-Golgi network (TGN), recycling endosome, and the plasma membrane (9, 49, 50) as well as playing a role in actin remodeling, cytokinesis, and abscission (27, 41, 55). Apical recycling endosome (ARE) trafficking is of particular interest in the context of viral infection as other negative-sense RNA viruses have been shown to assemble and/or traffic virion components through the ARE prior to final assembly and budding at the plasma membrane (4, 44, 51). Rab11 function is modulated and targeted through interactions with Rab11 family interacting proteins (Rab11-FIPs) that direct it to specific subcellular locations (23, 25, 26) by binding to actin or microtubule-based motor proteins (24, 26, 47). While Rab11-FIPs recognize both isoforms of Rab11 (a and b [Rab11a/b]) through a conserved amphipathic α-helical motif, they differ in their ability to bind either the GTP-bound form of Rab11 (FIP1, FIP3, FIP4, and Rip11) or both the GTP and GDP-bound forms (FIP2) (23, 30). FIP1 and FIP2 have been implicated in RSV budding (4, 51) while FIP4 is important for trafficking of HCMV components (32). FIP3 has not previously been linked with virus budding but plays an important role in both cell motility and cytokinesis, regulating actin dynamics and endosomal membrane trafficking (29, 55).In light of the normal cellular functions of Rab11 and its effectors and of their reported involvement in the budding of other viruses, we examined the role of this cellular pathway in influenza virus budding. We find that Rab11-FIP3 is essential for filamentous but not spherical virion formation while Rab11 is required for both forms of virus budding. 相似文献
6.
7.
8.
9.
10.
Drosophila Syntaxin Is Required for Cell Viability and May Function in Membrane Formation and Stabilization 总被引:1,自引:0,他引:1 下载免费PDF全文
The role of the Drosophila homologue of syntaxin-1A (syx) in neurotransmission has been extensively studied. However, developmental Northern analyses and in situ hybridization experiments show that SYX mRNA is expressed during all stages and in many tissues. We have isolated new mutations in syx that reveal roles for syx outside the nervous system. In the ovary, SYX is present in the germarium, but it is predominantly localized to nurse cell membranes. Mitotic recombination experiments in the germ-line show SYX is essential for oogenesis and may participate in membrane biogenesis in the nurse cells. In the early embryo, a large contribution of maternally deposited RNA is present, and the protein is localized at cell membranes during cellularization. After the maternal contribution is depleted, zygotically produced SYX assists secretion events occurring late in embryogenesis, such as cuticle deposition and neurotransmitter release. However, SYX is also required in larval imaginal discs, as certain hypomorphic mutant combinations exhibit rough eyes and wing notch defects indicative of cell death. Furthermore, recombinant clones that lack syx cause cell lethality in the developing eye. We propose that, similar to its roles in cuticle secretion and neurotransmitter release, SYX may mediate membrane assembly events throughout Drosophila development. 相似文献
11.
Susana Pascoal Joana Esteves de Lima Jonathan D. Leslie Simon M. Hughes Leonor Saúde 《PloS one》2013,8(6)
Background
Accurate regulation of Notch signalling is central for developmental processes in a variety of tissues, but its function in pectoral fin development in zebrafish is still unknown.Methodology/Principal Findings
Here we show that core elements necessary for a functional Notch pathway are expressed in developing pectoral fins in or near prospective muscle territories. Blocking Notch signalling at different levels of the pathway consistently leads to the formation of thin, wavy, fragmented and mechanically weak muscles fibres and loss of stress fibres in endoskeletal disc cells in pectoral fins. Although the structural muscle genes encoding Desmin and Vinculin are normally transcribed in Notch-disrupted pectoral fins, their proteins levels are severely reduced, suggesting that weak mechanical forces produced by the muscle fibres are unable to stabilize/localize these proteins. Moreover, in Notch signalling disrupted pectoral fins there is a decrease in the number of Pax7-positive cells indicative of a defect in myogenesis.Conclusions/Significance
We propose that by controlling the differentiation of myogenic progenitor cells, Notch signalling might secure the formation of structurally stable muscle fibres in the zebrafish pectoral fin. 相似文献12.
《Critical reviews in biochemistry and molecular biology》2013,48(3):235-305
AbstractThe major intrinsic protein (MIP) of the bovine lens fiber cell membrane was the first member of the MIP family of proteins to be sequenced and characterized. It is probably a homotetramer with transmembrane channel activity that plays a role in lens biogenesis or maintenance. The polypeptide chain of each subunit may span the membrane six times, and both the N- and C-termini face the cell cytoplasm. Eighteen sequenced or partially sequenced proteins from bacteria, yeast, plants, and animals have now been shown to be members of the MIP family. These proteins appear to function in (1) metazoan development and neurogenesis (MIP and BIB), (2) water transport across the human erythrocyte membrane (ChIP), (3) communication between host plant cells and symbiotic nitrogen-fixing bacteria (NOD), (4) transport across the tonoplast membrane during plant seed development (α-TIP), (5) water stress-induced resistance to desiccation in plants (Wsi-TIP), (6) suppression of a genetic growth defect on fermentable sugars in yeast (FPS1), and (7) transport of glycerol across bacterial cell membranes (GlpF). One other sequenced member of the MIP family (ORF1 of Lactococcus lactis) has no known physiological function. The biochemical functions of the eukaryotic proteins are not well established.Computer analyses have revealed that the first and second halves of all MTP family proteins probably arose by a tandem, intragenic, duplication event. Thus, the primary structure of putative transmembrane helices 1 to 3 is similar to that of putative transmembrane helices 4 to 6 even though they are of opposite orientation in the membrane. Among the most conserved residues in these two repeated halves are a membrane-embedded glutamate (E) in helices 1 and 4, an asparagine-proline-alanine (NPA) sequence in the loops between helices 2 and 3 (cytoplasmically localized) and helices 5 and 6 (extracellularly localized), and a glycine within helices 3 and 6. Statistical analyses suggest that the two halves of these proteins have evolved to serve distinct functions: the first half is more important for the generalized or common functions of these proteins, while the second half of these proteins is more differentiated to provide specific or dissimilar functions of the proteins. The apparent origin of MIP family proteins by duplication of a three-spanner precursor protein suggests an evolutionary origin distinct from other transport proteins with six transmembrane spanners. Based on the phylogenetic tree for the 18 sequenced members of the MTP family, we propose that a single, primordial gene arose in prokaryotes shortly before the emergence of eukaryotes, mat this gene was vertically transmitted to the principal eukaryotic kingdoms, and that subsequent gene duplication and divergence events gave rise to kingdom-related subfamilies or clusters of the MIP family. 相似文献
13.
14.
Sine Oculis Is a Homeobox Gene Required for Drosophila Visual System Development 总被引:2,自引:0,他引:2 下载免费PDF全文
The so(mda) (sine oculis-medusa) mutant is the result of a P element insertion at position 43C on the second chromosome. so(mda) causes aberrant development of the larval photoreceptor (Bolwig's) organ and the optic lobe primordium in the embryo. Later in development, adult photoreceptors fail to project axons into the optic ganglion. Consequently optic lobe development is aborted and photoreceptor cells show age-dependent retinal degeneration. The so gene was isolated and characterized. The gene encodes a homeodomain protein expressed in the optic lobe primordium and Bolwig's organ of embryos, in the developing adult visual system of larvae, and in photoreceptor cells and optic lobes of adults. In addition, the SO product is found at invagination sites during embryonic development: at the stomadeal invagination, the cephalic furrow, and at segmental boundaries. The mutant so(mda) allele causes severe reduction of SO embryonic expression but maintains adult visual system expression. Ubiquitous expression of the SO gene product in 4-8-hr embryos rescues all so(mda) mutant abnormalities, including the adult phenotypes. Thus, all deficits in adult visual system development and function result from failure to properly express the so gene during embryonic development. This analysis shows that the homeodomain containing SO gene product is involved in the specification of the larval and adult visual system development during embryogenesis. 相似文献
15.
Frederique Zindy Youngsoo Lee Daisuke Kawauchi Olivier Ayrault Leila Ben Merzoug Yang Li Peter J. McKinnon Martine F. Roussel 《PloS one》2015,10(6)
Dicer, a ribonuclease III enzyme, is required for the maturation of microRNAs. To assess its role in cerebellar and medulloblastoma development, we genetically deleted Dicer in Nestin-positive neural progenitors and in mice lacking one copy for the Sonic Hedgehog receptor, Patched 1. We found that conditional loss of Dicer in mouse neural progenitors induced massive Trp53-independent apoptosis in all proliferative zones of the brain and decreased proliferation of cerebellar granule progenitors at embryonic day 15.5 leading to abnormal cerebellar development and perinatal lethality. Loss of one copy of Dicer significantly accelerated the formation of mouse medulloblastoma of the Sonic Hedgehog subgroup in Patched1-heterozygous mice. We conclude that Dicer is required for proper cerebellar development, and to restrain medulloblastoma formation. 相似文献
16.
17.
Youji He Theodorus B. M. Hakvoort S. Eleonore K?hler Jacqueline L. M. Vermeulen D. Rudi de Waart Chiel de Theije Gabrie A. M. ten Have Hans M. H. van Eijk Cindy Kunne Wilhelmina T. Labruyere Sander M. Houten Milka Sokolovic Jan M. Ruijter Nicolaas E. P. Deutz Wouter H. Lamers 《The Journal of biological chemistry》2010,285(13):9516-9524
The main endogenous source of glutamine is de novo synthesis in striated muscle via the enzyme glutamine synthetase (GS). The mice in which GS is selectively but completely eliminated from striated muscle with the Cre-loxP strategy (GS-KO/M mice) are, nevertheless, healthy and fertile. Compared with controls, the circulating concentration and net production of glutamine across the hindquarter were not different in fed GS-KO/M mice. Only a ∼3-fold higher escape of ammonia revealed the absence of GS in muscle. However, after 20 h of fasting, GS-KO/M mice were not able to mount the ∼4-fold increase in glutamine production across the hindquarter that was observed in control mice. Instead, muscle ammonia production was ∼5-fold higher than in control mice. The fasting-induced metabolic changes were transient and had returned to fed levels at 36 h of fasting. Glucose consumption and lactate and ketone-body production were similar in GS-KO/M and control mice. Challenging GS-KO/M and control mice with intravenous ammonia in stepwise increments revealed that normal muscle can detoxify ∼2.5 μmol ammonia/g muscle·h in a muscle GS-dependent manner, with simultaneous accumulation of urea, whereas GS-KO/M mice responded with accumulation of glutamine and other amino acids but not urea. These findings demonstrate that GS in muscle is dispensable in fed mice but plays a key role in mounting the adaptive response to fasting by transiently facilitating the production of glutamine. Furthermore, muscle GS contributes to ammonia detoxification and urea synthesis. These functions are apparently not vital as long as other organs function normally. 相似文献
18.
Loss-of-function mutations in TRPML1 (transient receptor potential mucolipin 1) cause the lysosomal storage disorder, mucolipidosis type IV (MLIV). Here, we report that flies lacking the TRPML1 homolog displayed incomplete autophagy and reduced viability during the pupal period-a phase when animals rely on autophagy for nutrients. We show that TRPML was required for fusion of amphisomes with lysosomes, and its absence led to accumulation of vesicles of significantly larger volume and higher luminal Ca(2+). We also found that trpml(1) mutant cells showed decreased TORC1 (target of rapamycin complex 1) signaling and a concomitant upregulation of autophagy induction. Both of these defects in the mutants were reversed by genetically activating TORC1 or by feeding the larvae a high-protein diet. The high-protein diet?also reduced the pupal lethality and the increased volume of acidic vesicles. Conversely, further inhibition of TORC1 activity by rapamycin exacerbated the mutant phenotypes. Finally, TORC1 exerted reciprocal control on TRPML function. A high-protein diet caused cortical localization of TRPML, and this effect was blocked by rapamycin. Our findings delineate the interrelationship between the TRPML and TORC1 pathways and raise the intriguing possibility that a high-protein diet might reduce the severity of MLIV. 相似文献
19.
20.
Juvenile Hormone (JH) has a prominent role in the regulation of insect development. Much less is known about its roles in adults, although functions in reproductive maturation have been described. In adult females, JH has been shown to regulate egg maturation and mating. To examine a role for JH in male reproductive behavior we created males with reduced levels of Juvenile Hormone Acid O-Methyl Transferase (JHAMT) and tested them for courtship. JHAMT regulates the last step of JH biosynthesis in the Corpora Allata (CA), the organ of JH synthesis. Males with reduced levels of JHAMT showed a reduction in courtship that could be rescued by application of Methoprene, a JH analog, shortly before the courtship assays were performed. In agreement with this, reducing JHAMT conditionally in mature flies led to courtship defects that were rescuable by Methoprene. The same result was also observed when the CA were conditionally ablated by the expression of a cellular toxin. Our findings demonstrate that JH plays an important physiological role in the regulation of male mating behavior. 相似文献