首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Cisplatin (DDP) is the first line chemotherapeutic drug for several cancers, including gastric cancer (GC). Unfortunately, the rapid development of drug resistance remains a significant challenge for the clinical application of cisplatin. There is an urgent need to develop new strategies to overcome DDP resistance for cancer treatment. In this study, four types of human GC cells have been divided into naturally sensitive or naturally resistant categories according to their responses to cisplatin. PARP1 activity (poly (ADP-ribose), PAR) was found to be greatly increased in cisplatin-resistant GC cells. PARP1 inhibitors significantly enhanced cisplatin-induced DNA damage and apoptosis in the resistant GC cells via the inhibition of PAR. Mechanistically, PARP1 inhibitors suppress DNA-PKcs stability and reduce the capability of DNA double-strand break (DSB) repair via the NHEJ pathway. This was also verified in BGC823/DDP GC cells with acquired cisplatin resistance. In conclusion, we identified that PARP1 is a useful interceptive target in cisplatin-resistant GC cells. Our data provide a promising therapeutic strategy against cisplatin resistance in GC cells that has potential translational significance.  相似文献   

2.
W Xu  Q Chen  Q Wang  Y Sun  S Wang  A Li  S Xu  O D R?e  M Wang  R Zhang  L Yang  J Zhou 《Cell death & disease》2014,5(12):e1551
Gastric cancer is the third most common malignancy in China, with a median 5-year survival of only 20%. Cisplatin has been used in first-line cancer treatment for several types of cancer including gastric cancer. However, patients are often primary resistant or develop acquired resistance resulting in relapse of the cancer and reduced survival. Recently, we demonstrated that the reduced expression of base excision repair protein XRCC1 and its upstream regulator JWA in gastric cancerous tissues correlated with a significant survival benefit of adjuvant first-line platinum-based chemotherapy as well as XRCC1 playing an important role in the DNA repair of cisplatin-resistant gastric cancer cells. In the present study, we demonstrated the role of JWA in cisplatin-induced DNA lesions and aquired cisplatin resistance in five cell-culture models: gastric epithelial cells GES-1, cisplatin-sensitive gastric cancer cell lines BGC823 and SGC7901, and the cisplatin-resistant gastric cancer cell lines BGC823/DDP and SGC7901/DDP. Our results indicated that JWA is required for DNA repair following cisplatin-induced double-strand breaks (DSBs) via XRCC1 in normal gastric epithelial cells. However, in gastric cancer cells, JWA enhanced cisplatin-induced cell death through regulation of DNA damage-induced apoptosis. The protein expression of JWA was significantly decreased in cisplatin-resistant cells and contributed to cisplatin resistance. Interestingly, as JWA upregulated XRCC1 expression in normal cells, JWA downregulated XRCC1 expression through promoting the degradation of XRCC1 in cisplatin-resistant gastric cancer cells. Furthermore, the negative regulation of JWA to XRCC1 was blocked due to the mutation of 518S/519T/523T residues of XRCC1, and indicating that the CK2 activated 518S/519T/523T phosphorylation is a key point in the regulation of JWA to XRCC1. In conclusion, we report for the first time that JWA regulated cisplatin-induced DNA damage and apoptosis through the CK2—P-XRCC1—XRCC1 pathway, indicating a putative drug target for reversing cisplatin resistance in gastric cancer.Gastric cancer (GC) is the fifth most common human malignant tumor worldwide but third cause of cancer death.1 In 2012, there were 405 000 new GC cases diagnosed and 325 000 deaths in China.1 Current strategy for treatment of GC includes surgery with chemotherapy for potentially curable disease and chemotherapy only for advanced disease. Unfortunately, owing to intrinsic or acquired drug resistance, relapse and metastasis are common and result in high mortality of GC.2Cisplatin is a widely used chemotherapeutic drug for treating various tumors including GC.3 Cisplatin triggers apoptosis by inducing DNA damage through crosslinking of the DNA.4 However, cancer cells often develop multiple mechanisms to overcome cisplatin-induced DNA damage and apoptosis, and lead to cisplatin resistance.5, 6 Two of the major systems activated are enhanced capability of DNA repair and anti-apoptosis signaling pathways.7, 8XRCC1 is a key mediator of single-strand break DNA repair, and is involved in the process of cisplatin-induced DNA damage repair in various tumors.9, 10, 11 XRCC1 was found to identify and bind to DNA interstrand crosslinks induced by cisplatin.12 Moreover casein kinase 2 (CK2) phosphorylates XRCC1 and is required for its stability and efficient DNA repair.13 A selective small molecule inhibitor of CK2, CX-4945, was found to block the cisplatin-induced DNA repair response by decreasing the phosphorylation of XRCC1 at CK2-specific phosphorylation sites.14 This body of evidence indicates a critical role of XRCC1 and CK2 in cisplatin resistance.The JWA gene, also known as ARL6ip5, was initially cloned from human tracheal bronchial epithelial cells after treatment with all-trans retinoic acid.15 Subsequent studies indicated that JWA is involved in the cellular responses to heat shock and chemical-mediated oxidative stresses.16, 17 Moreover, JWA functions as a base excision repair protein in oxidative-stress-induced DNA single-strand breaks in NIH-3T3 and HELF cells, as evidenced by the positive regulation of XRCC1 levels through MAPK signal pathway and protecting XRCC1 protein from ubiquitination and degradation by proteasome.18, 19 However, JWA is also a structurally novel microtubule-binding protein, which regulates cancer cell migration via MAPK cascades and mediates differentiation of leukemic cells.20, 21, 22 JWA significantly inhibits melanoma adhesion, invasion and metastasis via integrin aVb3 signaling.23 More recent data have shown that JWA is required for As2O3-induced apoptosis in HeLa and MCF-7 cells via reactive oxygen species and mitochondria-linked signal pathway or promoted p38 MAPK-linked tubulin polymerization.24, 25 These reports indicate that the JWA functions as a tumor suppressor for tumor initiation and development.Recently, we reported the prognostic and predictive role of JWA and XRCC1 expression in GC. JWA and XRCC1 protein levels are significantly downregulated in GC lesions compared with adjacent noncancerous tissues, whereas platinum-based chemotherapy significantly improved overall survival in GC patients with low levels of tumoral JWA or XRCC1 expression.26 Subsequent studies indicated that overexpression of XRCC1 contributed to cisplatin resistance in GC cells and showed that XRCC1 protein was important for effective repair of cisplatin-induced DSBs in GC cells.27 However, the contribution of JWA to cisplatin resistance in GC and underlying mechanisms are not fully understood.The objectives of the present study were to investigate the role of JWA in cisplatin resistance of GC cells and elucidate the underlying mechanisms of action. Our results demonstrated that JWA negatively regulated XRCC1 through the CK2—p-XRCC1 pathway in cisplatin-resistant GC cells. The JWA could be a valuable target for reversal of cisplatin resistance in human GC.  相似文献   

3.
Although cisplatin is a very effective anticancer agent against several types of cancer including ovarian cancer, the mechanisms of acquired resistance are not fully understood. By chronically exposing cisplatin to ovarian cancer cell lines, we established two cisplatin-resistant cell lines OV433 and TOV112D. Our results indicate that the mechanisms underlying their cisplatin resistance are distinct. In OV433 cells, cisplatin resistance is associated with increased expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1). By knocking down MKP-1 expression by siRNA or inhibiting MKP-1 expression by its pharmacological inhibitor triptolide, cisplatin-resistant OV433 cells became cisplatin-sensitive and subsequently increased cisplatin-induced apoptosis. In TOV112D cells, on the other hand, acquired cisplatin resistance is associated with increased levels of Bcl-2 protein. By inhibiting the activity of Bcl-2 protein with its pharmacological inhibitor gossypol or knocking down Bcl-2 expression by siRNA, cisplatin-resistant TOV112D cells became cisplatin-sensitive and subsequently increased cisplatin-induced apoptosis. Therefore, our data suggest that the mechanisms of acquired cisplatin resistance vary among ovarian cancer cells, which involve up-regulation of molecules associated with the cell survival pathways.  相似文献   

4.
5.
One of the most widely used antitumor drugs is cis-diamminedichloroplatinum(II) (cisplatin), and mechanisms of cisplatin resistance have been investigated in numerous model systems. Many studies have used mouse leukemia L1210/0 as a reference wild-type cell line, and cisplatin-resistant subclones have been derived from it. Increased DNA excision repair capacity is thought to play a key role in the acquired cisplatin resistance, and this has influenced development of drugs for clinical trials. We report here that the L1210/0 line is in fact severely deficient in nucleotide excision repair of damaged DNA in vivo and in vitro. L1210/0 cell extracts could be complemented by extracts from repair-defective human xeroderma pigmentosum (XP) or rodent excision repair cross-complementing (ERCC) mutant cells, except for XPG/ERCC5 mutants. Purified XPG protein could restore repair proficiency to L1210/0 extracts. Expression of mouse XPG mRNA was similar in all L1210 lines studied, suggesting a point mutation or small alteration of XPG in L1210/0 cells. The DNA repair capacity of a cisplatin-resistant subline, L1210/DDP10, is similar to that of type culture collection L1210 cells and to those of other normal mammalian cell lines. Nucleotide excision repair of DNA is thus clearly important in the intrinsic cellular defense against cisplatin. However, in contrast to what is generally believed, enhancement of DNA repair above the normal level in these rodent cells does not appear to be a mechanism of acquired resistance to the drug.  相似文献   

6.
Multidrug resistance is a major obstacle to successful treatment of oral squamous cell carcinoma (OSCC). Lately, we found a novel human gene named tongue cancer chemotherapy resistance-associated protein1 (TCRP1) in the tongue cancer multi-drug resistance cell line (Tca8113/PYM) established by us. In this study, we focus on recombinant expression, purification, and biochemical characterization of TCRP1. After molecular cloning and purification of the gene encoding the 24-kDa protein, a mouse polyclonal antibody against TCRP1 was prepared, and the specialty of the antibody was confirmed by Western blot. The cell proliferation was evaluated by MTS assay and DNA damage was determined by comet assay, the results indicated that this protein especially mediated the cell's resistance to cisplatin; it was associated with its role of providing protection against DNA damage. We also found that TCRP1 expression was increased in cisplatin-resistant carcinoma cell lines (Tca/PYM and A549/DDP), but not in cisplatin-sensitive MDR cell lines (MCF-7/5-Fu), compared with their parental counterparts by Western blot analysis. Immunofluorescence and immunohistochemical analysis showed TCRP1 is mainly expression in cytoplasmic, the Mann-Whitney U test exhibited that TCRP1 positive patients predicted the worst sensitive with cisplatin of OSCC patients. All these findings suggest that TCRP1 is a novel cisplatin-resistant protein which is mainly localized in the cytoplasm and can mediate cisplatin resistance against DNA damage; the expression level of TCRP1 in patients with OSCC may be useful as an indicator of therapeutic efficacy of the sensitivity to cisplatin.  相似文献   

7.
毛竹君  张慈安  武峰  魏品康 《生物磁学》2011,(10):1861-1864,1880
摘要目的:观察生半夏、南星中药水提物对缺氧环境中人胃癌细胞株BGC823细胞HIF-lα蛋白表达和侵袭力的影响。方法:运用CoCl2(氯化钴)诱导BCG823细胞缺氧,使得细胞中HIF-1α蛋白表达升高.实验组加入生半夏、南星水提物对细胞进行预处理,然后在进行缺氧诱导。通过甲基噻唑基四唑法(MTT)检测细胞活性,使用Transwell检测细胞侵袭能力变化,RT-PCR、Weste-rn blotting分别检测HIF-lαmRNA及蛋白含量及变化。结果:生半夏、南星水提物能抑制人胃癌BGC823细胞的增殖;生半夏、南星水提物均能抑制缺氧诱导胃癌细胞的侵袭力,并且能降低HIF-1αmRNA及蛋白表达。结论:生半夏、南星水提物可抑制人胃癌BGC823细胞的增殖,抑制人胃癌BGC823细胞侵袭力,可能通过降低HIF-1α蛋白表达有关。  相似文献   

8.
低氧模拟剂氯化钴对胃癌细胞BGC823中S100A4基因表达的影响   总被引:1,自引:0,他引:1  
滑君  付浩  张瑞秀  陈丹琦  闫扬  陈芳杰  孙开来  孙秀菊 《遗传》2008,30(12):1563-1566
摘要: S100A4基因是肿瘤侵袭转移相关的重要基因, 该基因高表达与胃癌浸润、淋巴结转移及胃癌细胞体外侵袭力密切相关。为探讨S100A4基因高表达的机制, 文章应用低氧模拟剂氯化钴处理胃癌细胞BGC823, RT-PCR、免疫组化、免疫荧光及Western blotting方法分别检测BGC823细胞中S100A4 mRNA及蛋白表达情况。结果显示, 氯化钴处理胃癌BGC823细胞后, S100A4 mRNA及蛋白表达明显增加。提示低氧模拟剂氯化钴可促进胃癌细胞BGC823中S100A4 基因表达。  相似文献   

9.
为研究层粘连蛋白(laminin,LN)促进肿瘤细胞生长作用,采用脉冲标记计数有丝分裂百分率(percentage labeling mitosis,PLM)法测得体外培养人胃癌 (BGC 823) 细胞周期时间为41 h,其中G1期时间为24.5 h. 分裂细胞脱离法获取分裂期细胞,继续培养23 h,在细胞运行进入G1晚期时,将其置于LN 0、0.11、0.55、1.10 μmol/L基质上孵育4 h; 细胞荧光光度计检测晚G1期细胞内Ca2+浓度、钙调蛋白、DNA含量. 结果显示,LN与其膜上受体结合后引起细胞内Ca2+浓度、钙调蛋白、DNA含量增加,尤以在0.55 μmol/L LN作用显著(P<0. 001).蛋白质免疫印迹分析证明,cPKC α呈现表达,提示 LN与其受体结合可增强其细胞cPKC-α的活性;分析G1期细胞周期蛋白E(cyclinE)、细胞周期蛋白依赖性激酶CDK2表达水平,呈现逐渐增强的趋势; LN可诱导c-Myc蛋白呈现高表达,提示 LN与其受体结合增强与细胞增殖密切相关的基因表达;在LN作用前后的BGC 823细胞均未检测到Bax蛋白表达.结果提示,在人胃癌 (BGC 823)细胞G1/S期交界处,层粘连蛋白与其膜上受体结合引起细胞内Ca2+浓度升高,诱导钙调蛋白的释放,其含量增加,增强蛋白激酶C的活化,导致细胞内DNA含量增加、G1/S期细胞周期蛋白与CDK表达增强、诱导原癌基因c-Myc呈持续表达状态,而凋亡基因Bax不表达.  相似文献   

10.

Background

Cisplatin is one of the most commonly used chemotherapy agent for lung cancer. The therapeutic efficacy of cisplatin is limited by the development of resistance.In this study, we test the effect of RNA interference (RNAi) targeting Fanconi anemia (FA)/BRCA pathway upstream genes on the sensitivity of cisplatin-sensitive (A549 and SK-MES-1) and -resistant (A549/DDP) lung cancer cells to cisplatin.

Result

Using small interfering RNA (siRNA), knockdown of FANCF, FANCL, or FANCD2 inhibited function of the FA/BRCA pathway in A549, A549/DDP and SK-MES-1 cells, and potentiated sensitivity of the three cells to cisplatin. The extent of proliferation inhibition induced by cisplatin after knockdown of FANCF and/or FANCL in A549/DDP cells was significantly greater than in A549 and SK-MES-1 cells, suggesting that depletion of FANCF and/or FANCL can reverse resistance of cisplatin-resistant lung cancer cells to cisplatin. Furthermore, knockdown of FANCL resulted in higher cisplatin sensitivity and dramatically elevated apoptosis rates compared with knockdown of FANCF in A549/DDP cells, indicating that FANCL play an important role in the repair of cisplatin-induced DNA damage.

Conclusion

Knockdown of FANCF, FANCL, or FANCD2 by RNAi could synergize the effect of cisplatin on suppressing cell proliferation in cisplatin-resistant lung cancer cells through inhibition of FA/BRCA pathway.  相似文献   

11.
目的构建人血红素加氧酶-1(hemeoxygenase-1,HO-1)及其突变体的真核表达载体,观察其在胃腺癌细胞中HO-1表达和活性变化,研究HO-1活性变化的胃腺癌细胞对顺铂抗药能力的变化,为进一步研究HO-1对肿瘤细胞影响机制奠定基础。方法根据GenBank中HO-1cDNA序列设计引物,调取基因并克隆入pcDNA3.1(+)质粒中,构建表达人野生型HO-1与突变型HO-1(HO-1G143H)的重组质粒。脂质体介导重组质粒转染胃腺癌细胞BGC823,用RT—PCR和Western印迹法分别检测细胞中HO-1mRNA的表达和蛋白表达水平,体外测定HO—1活性变化,应用顺铂进行体外抗药性实验。结果酶切鉴定和测序证实,HO-1真核表达载体构建成功;转染质粒后的BGC823,HO-1的mRNA和蛋白的表达水平明显上升;转入野生型质粒的细胞HO-1活性上升,转入突变型质粒的细胞HO-1活性下降;HO-1活性下降BGC823细胞抗顺铂杀伤能力增强。结论构建了HO-1野生型与突变型真核表达载体;将其转入胃腺癌细胞,引起了HO-1的mRNA和蛋白表达的增加和活性变化;体外实验表明,HO-1活性下降的BGC823细胞抗顺铂能力增强。  相似文献   

12.
构建携带错配修复基因hMLH1编码序列全长的真核表达质粒pCAN—hMLHl,并探讨其对卵巢癌细胞顺铂耐药的逆转作用。应用基因重组技术将pET28-hMLHl中的目的基因hMLHl定向克隆到真核表达载体pCAN,经酶切及测序鉴定:分别将pCAN—hMLHl和空质粒pCAN转染进卵巢癌耐药细胞SKOV3/DDP,同时以对顺铂敏感的sKOV3细胞和未转染的SKOV3/DDP细胞作为对照:应用RT-PCR和Westemblo凇测转染前后细胞内hMLHlmRNA和蛋白的表达变4Jc;四甲基偶氮唑蓝(MTT)比色法检测转染前后sKOv3/DDP细胞对顺铂敏感性的变化;Hoechst染色检测转染前后细胞的凋亡。结果提示:pCAN—hMLHl重组质粒经酶切及测序鉴定,表明真核表达质粒构建正确;采用脂质体法转染sKOv3/DDP细胞后,RT-PCR和Westernblot检测到耐药细胞内hMLHl的表达增强:MTT结果显示转染重组质粒后sKOv3/DDP细胞对顺铂的敏感性显著增加;Hoechst染色观察到转染后耐药细胞的凋亡明显增强。该研究成功构建了pCAN.hMLHl重组质粒,在sKOV3/DDP细胞中进行表达,并能增强耐药细胞对顺铂的敏感性,促进耐药细胞的凋亡。  相似文献   

13.
Increased expression of DNA repair genes contributes to the extreme resistance shown by melanoma to conventional DNA-damaging chemotherapeutics. One such chemotherapeutic effective against a range of other cancers, but not melanoma, is cisplatin. The DNA repair protein, ERCC1, is needed to remove cisplatin-induced DNA damage. We have shown that ERCC1 is essential for melanoma growth and resistance to cisplatin in a mouse xenograft model. Untreated xenografts of our transformed Ercc1-proficient melanocyte cell line grew very rapidly as malignant melanoma. Cisplatin treatment caused initial shrinkage of xenografts, but cisplatin-resistant regrowth soon followed. Cells reisolated into culture had twofold elevated levels of ERCC1 compared to both input cells and cells reisolated from untreated xenografts. An isogenic Ercc1-deficient derivative grew equally well in vitro as the Ercc1-proficient melanocyte cell line. However, in xenografts, the Ercc1-deficient melanomas were much slower to establish and were completely cured by just two cisplatin treatments.  相似文献   

14.
为探讨B-RAF基因特异的siRNA干扰对胃癌BGC823细胞的增殖和凋亡的影响, 设计并合成B-RAF小分子干扰RNA(B-RAF-siRNA)和阴性对照siRNA, 用TransMessenger介导转染胃癌BGC823细胞, RT-PCR分析检测胃癌BGC823细胞中B-RAF基因以及Bcl-2基因的表达; MTT检测胃癌BGC823细胞增殖情况; 流式细胞仪检测细胞凋亡情况, 并与对照组进行比较。TransMessenger能够有效介导B-RAF-siRNA和阴性对照siRNA转染胃癌BGC823细胞, TransMessenger介导的B-RAF-siRNA有效地抑制胃癌BGC823细胞B-RAF以及Bcl-2基因的表达, 与对照组相比, 抑制率达90.0%以上, 最高达100%; 同时明显抑制胃癌BGC823细胞增殖; 促进胃癌BGC823细胞的凋亡(P < 0.01)。B-RAF基因特异的siRNA干扰能有效地抑制胃癌BGC823细胞中B-RAF基因以及Bcl-2基因的表达, 同时促进胃癌细胞凋亡和抑制胃癌细胞增殖。  相似文献   

15.
目的:探究长非编码RNA SNHG18对胃癌细胞增殖和凋亡的影响。方法:采用实时定量PCR(qRT-PCR)技术检测人胃癌组织及癌旁组织和胃癌细胞系中lncRNA SNHG18的表达;采用MTT和克隆形成试验观察转染SNHG18过表达质粒后胃癌细胞BGC823增殖活力的变化;通过流式细胞术检测lncRNA SNHG18对胃癌细胞BGC823凋亡的影响。结果:相较于癌旁组织和胃正常粘膜上皮细胞系GSE-1,胃癌组织及胃癌细胞系中SNHG18的表达水平显著降低(P0.05);胃癌细胞过表达SNHG18增殖活力以及克隆形成的能力均显著降低(P0.05),而细胞凋亡率明显升高(P0.05)。结论:胃癌组织中长非编码RNA SNHG18呈低表达,可促进胃癌细胞增殖并抑制其凋亡,可能在胃癌发生发展过程中发挥重要作用。  相似文献   

16.
Berberine (BBR) is a natural isoquinoline alkaloid, which is used in traditional medicine for its anti‐microbial, anti‐protozoal, anti‐diarrhoeal activities. Berberine interacts with DNA and displays anti‐cancer activities, yet its effects on cellular DNA repair and on synthetic treatments with chemotherapeutic drugs remain unclear. In this study, we investigated the effects of BBR on DNA repair and on sensitization of breast cancer cells to different types of DNA damage anti‐tumoural drugs. We found BBR arrested cells in the cell cycle S phase and induced DNA breaks. Cell growth analysis showed BBR sensitized MDA‐MB‐231 cells to cisplatin, camptothecin and methyl methanesulfonate; however, BBR had no synergistic effects with hydroxurea and olaparib. These results suggest BBR only affects specific DNA repair pathways. Western blot showed BBR down‐regulated XRCC1 expressions, and the rescued XRCC1 recovered the resistance of cancer cells to BBR. Therefore, we conclude that BBR interferes with XRCC1‐mediated base excision repair to sensitize cancer cells to chemotherapeutic drugs. These finding can contribute to understanding the effects of BBR on cellular DNA repair and the clinical employment of BBR in treatment of breast cancer.  相似文献   

17.
18.
Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells.  相似文献   

19.

Introduction

Ataxia telangiectasia mutated and Rad3 Related (ATR) protein kinase is a key sensor of single-stranded DNA associated with stalled replication forks and repair intermediates generated during DNA repair. XRCC1 is a critical enzyme in single strand break repair and base excision repair. XRCC1-LIG3 complex is also an important contributor to the ligation step of the nucleotide excision repair response.

Methods

In the current study, we investigated synthetic lethality in XRCC1 deficient and XRCC1 proficient Chinese Hamster ovary (CHO) and human ovarian cancer cells using ATR inhibitors (NU6027). In addition, we also investigated the ability of ATR inhibitors to potentiate cisplatin cytotoxicity in XRCC1 deficient and XRCC1 proficient CHO and human cancer cells. Clonogenic assays, alkaline COMET assays, γH2AX immunocytochemistry, FACS for cell cycle as well as FITC-annexin V flow cytometric analysis were performed.

Results

ATR inhibition is synthetically lethal in XRCC1 deficient cells as evidenced by increased cytotoxicity, accumulation of double strand DNA breaks, G2/M cell cycle arrest and increased apoptosis. Compared to cisplatin alone, combination of cisplatin and ATR inhibitor results in enhanced cytotoxicity in XRCC1 deficient cells compared to XRCC1 proficient cells.

Conclusions

Our data provides evidence that ATR inhibition is suitable for synthetic lethality application and cisplatin chemopotentiation in XRCC1 deficient ovarian cancer cells.  相似文献   

20.
采用不同浓度梯度的蛋氨酸脑啡肽(methionine enkephalin,MENK)体外作用于人胃癌细胞BGC823后,探讨对其增殖影响及其作用机制,为胃癌的免疫治疗提供理论依据。体外培养人胃癌细胞株BGC823,PCR检测阿片受体OGFr的表达;用不同浓度(0、1、2、3、4 mg/mL)的MENK体外作用于BGC823细胞24、48、72、96 h后,MTS检测MENK对其增殖影响;流式细胞术和Annexin V-FITC/PI双染法检测4 mg/mL MENK体外处理48、72 h后BGC823细胞凋亡变化。结果显示,人胃癌BGC823细胞有阿片受体OGFr的表达;MENK可抑制BGC823细胞增殖,且随着剂量的增加和时间的延长,其抑制作用逐渐增强(P0.05);4 mg/mL MENK48 h处理组与空白组相比细胞凋亡率增加,72 h处理组与48 h处理组结果一致(P0.05)。结果表明,MENK可抑制BGC823细胞增殖,具有显著的剂量依赖性和时间依赖性,且可通过诱导细胞凋亡抑制BGC823细胞的增殖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号