首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
3-Phosphoinositide-dependent kinase-1 (PDK1) is a ubiquitously expressed serine/threonine kinase that functions downstream of phosphoinositide 3-kinase. Although binding of 3'-phosphoinositides, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate, to the pleckstrin homology (PH) domain of PDK1 is known to be essential for its interaction with and activation of downstream kinases, the mechanism by which PDK1 is recruited to the plasma membrane remains controversial. Our surface plasmon resonance analysis of the PDK1 PH domain and selected mutants shows that the PH domain specifically binds phosphatidylserine using a site that is separate from the canonical phosphoinositide-binding site. Further cell studies show that this specific phosphatidylserine binding is important for the plasma membrane localization and signaling function of PDK1.  相似文献   

4.
Polycomb Group (PcG) proteins are epigenetic repressors essential for control of development and cell differentiation. They form multiple complexes of which PRC1 and PRC2 are evolutionary conserved and obligatory for repression. The targeting of PRC1 and PRC2 is poorly understood and was proposed to be hierarchical and involve tri-methylation of histone H3 (H3K27me3) and/or monoubiquitylation of histone H2A (H2AK118ub). Here, we present a strict test of this hypothesis using the Drosophila model. We discover that neither H3K27me3 nor H2AK118ub is required for targeting PRC complexes to Polycomb Response Elements (PREs). We find that PRC1 can bind PREs in the absence of PRC2 but at many PREs PRC2 requires PRC1 to be targeted. We show that one role of H3K27me3 is to allow PcG complexes anchored at PREs to interact with surrounding chromatin. In contrast, the bulk of H2AK118ub is unrelated to PcG repression. These findings radically change our view of how PcG repression is targeted and suggest that PRC1 and PRC2 can communicate independently of histone modifications.  相似文献   

5.
6.
7.
To initiate mitochondrial fission, dynamin-related proteins (DRPs) must bind specific adaptors on the outer mitochondrial membrane. The structural features underlying this interaction are poorly understood. Using yeast as a model, we show that the Insert B domain of the Dnm1 guanosine triphosphatase (a DRP) contains a novel motif required for association with the mitochondrial adaptor Mdv1. Mutation of this conserved motif specifically disrupted Dnm1–Mdv1 interactions, blocking Dnm1 recruitment and mitochondrial fission. Suppressor mutations in Mdv1 that restored Dnm1–Mdv1 interactions and fission identified potential protein-binding interfaces on the Mdv1 β-propeller domain. These results define the first known function for Insert B in DRP–adaptor interactions. Based on the variability of Insert B sequences and adaptor proteins, we propose that Insert B domains and mitochondrial adaptors have coevolved to meet the unique requirements for mitochondrial fission of different organisms.  相似文献   

8.
Apoptosis-linked gene-2 (ALG-2) encodes a 22 kDa Ca(2+)-binding protein of the penta EF-hand family that is required for programmed cell death in response to various apoptotic agents. Here, we demonstrate that ALG-2 mRNA and protein are down-regulated in human uveal melanoma cells compared to their progenitor cells, normal melanocytes. The down regulation of ALG-2 may provide melanoma cells with a selective advantage. ALG-2 and its putative target molecule, Alix/AIP1, are localized primarily in the cytoplasm of melanocytes and melanoma cells independent of the intracellular Ca(2+) concentration or the activation of apoptosis. Cross-linking and analytical centrifugation studies support a single-species dimer conformation of ALG-2, also independent of Ca(2+) concentration. However, binding of Ca(2+) to both EF-1 and EF-3 is necessary for ALG-2 interaction with Alix/AIP1 as demonstrated using surface plasmon resonance spectroscopy. Mutations in EF-5 result in reduced target interaction without alteration in Ca(2+) affinity. The addition of N-terminal ALG-2 peptides, residues 1-22 or residues 7-17, does not alter the interaction of ALG-2 or an N-terminal deletion mutant of ALG-2 with Alix/AIP1, as might be expected from a model derived from the crystal structure of ALG-2. Fluorescence studies of ALG-2 demonstrate that an increase in surface hydrophobicity is primarily due to Ca(2+) binding to EF-3, while Ca(2+) binding to EF-1 has little effect on surface exposure of hydrophobic residues. Together, these data indicate that gross surface hydrophobicity changes are insufficient for target recognition.  相似文献   

9.
Trafficking of water channel aquaporin-2 (AQP2) to the apical membrane and its vasopressin and protein kinase A (PKA)-dependent regulation in renal collecting ducts is critical for body water homeostasis. We previously identified an AQP2 binding protein complex including actin and tropomyosin-5b (TM5b). We show that dynamic interactions between AQP2 and the actin cytoskeleton are critical for initiating AQP2 apical targeting. Specific binding of AQP2 to G-actin in reconstituted liposomes is negatively regulated by PKA phosphorylation. Dual color fluorescence cross-correlation spectroscopy reveals local AQP2 interaction with G-actin in live epithelial cells at single-molecule resolution. Cyclic adenosine monophosphate signaling and AQP2 phosphorylation release AQP2 from G-actin. In turn, AQP2 phosphorylation increases its affinity to TM5b, resulting in reduction of TM5b bound to F-actin, subsequently inducing F-actin destabilization. RNA interference-mediated knockdown and overexpression of TM5b confirm its inhibitory role in apical trafficking of AQP2. These findings indicate a novel mechanism of channel protein trafficking, in which the channel protein itself critically regulates local actin reorganization to initiate its movement.  相似文献   

10.
11.
Hirano M  Hirano T 《The EMBO journal》2002,21(21):5733-5744
Structural maintenance of chromosomes (SMC) proteins play central roles in regulating higher order chromosome dynamics from bacteria to humans. As judged by electron microscopy, the SMC homodimer from Bacillus subtilis (BsSMC) is composed of two antiparallel, coiled-coil arms with a flexible hinge. Site-directed cross-linking experiments show here that dimerization of BsSMC is mediated by a hinge-hinge interaction between self-folded monomers. This architecture is conserved in the eukaryotic SMC2-SMC4 heterodimer. Analysis of different deletion mutants of BsSMC unexpectedly reveals that the major DNA-binding activity does not reside in the catalytic ATPase domains located at the ends of a dimer. Instead, point mutations in the hinge domain that disturb dimerization of BsSMC drastically reduce its ability to interact with DNA. Proper hinge function is essential for BsSMC to recognize distinct DNA topology, and mutant proteins with altered hinge angles cross-link double-stranded DNA in a nucleotide-dependent manner. We propose that the hinge domain of SMC proteins is not a simple dimerization site, but rather it acts as an essential determinant of dynamic SMC-DNA interactions.  相似文献   

12.
13.
The LIM domain protein zyxin is a component of adherens type junctions, stress fibers, and highly dynamic membrane areas and appears to be involved in microfilament organization. Chicken zyxin and its human counterpart display less than 60% sequence identity, raising concern about their functional identity. Here, we demonstrate that human zyxin, like the avian protein, specifically interacts with alpha-actinin. Furthermore, we map the interaction site to a motif of approximately 22 amino acids, present in the N-terminal domain of human zyxin. This motif is both necessary and sufficient for alpha-actinin binding, whereas a downstream region, which is related in sequence, appears to be dispensable. A synthetic peptide comprising human zyxin residues 21-42 specifically binds to alpha-actinin in solid phase binding assays. In contrast to full-length zyxin, constructs lacking this motif do not interact with alpha-actinin in blot overlays and fail to recruit alpha-actinin in living cells. When zyxin lacking the alpha-actinin binding site is expressed as a fusion protein with green fluorescent protein, association of the recombinant protein with stress fibers is abolished, and targeting to focal adhesions is grossly impaired. Our results suggest a crucial role for the alpha-actinin-zyxin interaction in subcellular zyxin localization and microfilament organization.  相似文献   

14.
15.
Bipolar spindle assembly is necessary to ensure the proper progression of cell division. Loss of spindle pole integrity leads to multipolar spindles and aberrant chromosomal segregation. However, the mechanism underlying the maintenance of spindle pole integrity remains unclear. In this study, we show that the actin‐binding protein adducin‐1 (ADD1) is phosphorylated at S726 during mitosis. S726‐phosphorylated ADD1 localizes to centrosomes, wherein it organizes into a rosette‐like structure at the pericentriolar material. ADD1 depletion causes centriole splitting and therefore results in multipolar spindles during mitosis, which can be restored by re‐expression of ADD1 and the phosphomimetic S726D mutant but not by the S726A mutant. Moreover, the phosphorylation of ADD1 at S726 is crucial for its interaction with TPX2, which is essential for spindle pole integrity. Together, our findings unveil a novel function of ADD1 in maintaining spindle pole integrity through its interaction with TPX2.  相似文献   

16.
Platelet adhesion on and activation by components of the extracellular matrix are crucial to arrest post-traumatic bleeding, but can also harm tissue by occluding diseased vessels. Integrin alpha2beta1 is thought to be essential for platelet adhesion to subendothelial collagens, facilitating subsequent interactions with the activating platelet collagen receptor, glycoprotein VI (GPVI). Here we show that Cre/loxP-mediated loss of beta1 integrin on platelets has no significant effect on the bleeding time in mice. Aggregation of beta1-null platelets to native fibrillar collagen is delayed, but not reduced, whereas aggregation to enzymatically digested soluble collagen is abolished. Furthermore, beta1-null platelets adhere to fibrillar, but not soluble collagen under static as well as low (150 s(-1)) and high (1000 s(-1)) shear flow conditions, probably through binding of alphaIIbbeta3 to von Willebrand factor. On the other hand, we show that platelets lacking GPVI can not activate integrins and consequently fail to adhere to and aggregate on fibrillar as well as soluble collagen. These data show that GPVI plays the central role in platelet-collagen interactions by activating different adhesive receptors, including alpha2beta1 integrin, which strengthens adhesion without being essential.  相似文献   

17.
The CtIP protein facilitates homology-directed repair (HDR) of double-strand DNA breaks (DSBs) by initiating DNA resection, a process in which DSB ends are converted into 3′-ssDNA overhangs. The BRCA1 tumor suppressor, which interacts with CtIP in a phospho-dependent manner, has also been implicated in DSB repair through the HDR pathway. It was recently reported that the BRCA1–CtIP interaction is essential for HDR in chicken DT40 cells. To examine the role of this interaction in mammalian cells, we generated cells and mice that express Ctip polypeptides (Ctip-S326A) that fail to bind BRCA1. Surprisingly, isogenic lines of Ctip-S326A mutant and wild-type cells displayed comparable levels of HDR function and chromosomal stability. Although Ctip-S326A mutant cells were modestly sensitive to topoisomerase inhibitors, mice expressing Ctip-S326A polypeptides developed normally and did not exhibit a predisposition to cancer. Thus, in mammals, the phospho-dependent BRCA1–CtIP interaction is not essential for HDR-mediated DSB repair or for tumor suppression.  相似文献   

18.
19.
HP1 is essential for DNA methylation in neurospora   总被引:6,自引:0,他引:6  
Methylation of cytosines silences transposable elements and selected cellular genes in mammals, plants, and some fungi. Recent findings have revealed mechanistic connections between DNA methylation and features of specialized condensed chromatin, "heterochromatin." In Neurospora crassa, DNA methylation depends on trimethylation of Lys9 in histone H3 by DIM-5. Heterochromatin protein HP1 binds methylated Lys9 in vitro. We therefore investigated the possibility that a Neurospora HP1 homolog reads the methyl-Lys9 mark to signal DNA methylation. We identified an HP1 homolog and showed that it is essential for DNA methylation, is localized to heterochromatic foci, and that this localization is dependent on the catalytic activity of DIM-5. We conclude that HP1 serves as an adaptor between methylated H3 Lys9 and the DNA methylation machinery. Unlike mutants that lack DNA methyltransferase, mutants with defects in the HP1 gene hpo exhibit severe growth defects, suggesting that HP1 is required for processes besides DNA methylation.  相似文献   

20.
Receptors for activated C kinase (RACKs) are a group of protein kinase C (PKC) binding proteins that have been shown to be crucial in the translocation and subsequent functioning of PKC on activation. RACK1 isolated from BALB/3T3 cells transformed with S-ras(Q61K) exhibits receptor activity for PKCgamma as competent as that of RACK1 from BALB/3T3 cells without transformation. However, the ability of RACK1 from transformed cells to bind with beta-tubulin peptide specific for Taxol (PEPtaxol) is defective. Interestingly, when farnesyl pyrophosphate was added at the submicrogram level, the association between RACK1 and PEPtaxol was enhanced significantly in a dosage-dependent manner. A parallel finding for the enhanced effect of farnesyl pyrophosphate on tubulin binding was established with mice RACK1 expressed in vitro. On the other hand, geranylgeranyl pyrophosphate, and retinoic acid failed to modulate the binding between RACK1 and tubulin. The dissociation of RACK1 and tubulin was not effective at damaging the binding between RACK1 and membrane receptor integrin beta1 in transformed cells. These findings indicate that depletion of farnesyl pyrophosphate provides a mechanism to seal PKC signaling on the membrane with immobile RACK1 and to divert cells to aberrant growth, such as transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号