共查询到20条相似文献,搜索用时 15 毫秒
1.
Emily Chen Krystle Reiss Dilip Shah Ramu Manjula Brandon Allen Eva L. Murphy James W. Murphy Victor S. Batista Vineet Bhandari Elias J. Lolis George P. Lisi 《The Journal of biological chemistry》2021,297(3)
The macrophage migration inhibitory factor (MIF) family of cytokines contains multiple ligand-binding sites and mediates immunomodulatory processes through an undefined mechanism(s). Previously, we reported a dynamic relay connecting the MIF catalytic site to an allosteric site at its solvent channel. Despite structural and functional similarity, the MIF homolog D-dopachrome tautomerase (also called MIF-2) has low sequence identity (35%), prompting the question of whether this dynamic regulatory network is conserved. Here, we establish the structural basis of an allosteric site in MIF-2, showing with solution NMR that dynamic communication is preserved in MIF-2 despite differences in the primary sequence. X-ray crystallography and NMR detail the structural consequences of perturbing residues in this pathway, which include conformational changes surrounding the allosteric site, despite global preservation of the MIF-2 fold. Molecular simulations reveal MIF-2 to contain a comparable hydrogen bond network to that of MIF, which was previously hypothesized to influence catalytic activity by modulating the strength of allosteric coupling. Disruption of the allosteric relay by mutagenesis also attenuates MIF-2 enzymatic activity in vitro and the activation of the cluster of differentiation 74 receptor in vivo, highlighting a conserved point of control for nonoverlapping functions in the MIF superfamily. 相似文献
2.
Schwartz V Krüttgen A Weis J Weber C Ostendorf T Lue H Bernhagen J 《European journal of cell biology》2012,91(6-7):435-449
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that plays a role in innate and adaptive immunity. Depending on the cellular context and disease state, MIF signaling is mediated by its receptors CXCR2, CXCR4 and/or CD74. Although it is known that MIF is endocytosed, the exact mechanism has remained unknown. In exploring the mechanism of MIF endocytosis with biologically active Alexa(546)MIF, pathway-specific inhibitors (monodansylcadaverine, MDC; chlorpromazine, CPZ; dynasore; dominant-negative dynamin, bafilomycin, nocodazole) and receptor overexpression and blockade approaches, we identified a clathrin/dynamin-dependent endocytosis pathway as the main track for MIF internalization. MIF endocytosis was rapid and colocalization with both early and late endosomal vesicles in a microtubule- and acidification-dependent manner was observed. LDL endocytosis (which is clathrin-mediated) served as a control and was similarly inhibited by MDC or dynasore. When MIF endocytosis was compared to that of transferrin, acetylated LDL, and choleratoxin B (the latter internalized by a clathrin-independent pathway) by colocalization studies, the MIF internalization pathway clearly resembled that of LDL but also shared early trafficking with transferrin, whereas no colocalization with choleratoxin was noted. To identify the receptors involved in MIF endocytosis, we focused on CD74 and CXCR4 which form a heteromeric complex. Ectopic overexpression of CD74 in HEK293 and HeLa cells, which do not endogenously express CD74, led to a marked acceleration of MIF endocytosis while pharmacological blockade of CXCR4, which is endogenously expressed on these cells, with AMD3100 led to a 20% reduction of MIF endocytosis in HEK293-CD74 transfectants, whereas in untransfected cells, a blockade of 40% was observed. Of note, both CD74 and CXCR4 strongly colocalize with Alexa(546)MIF both on the plasma membrane and in endosomal compartments. Moreover, MIF-stimulated AKT signaling, which was previously shown to involve both CD74 and CXCR4, was reduced by endocytosis inhibitors, indicating that MIF signaling is at least in part due to endosomal signaling mechanisms. Thus, MIF uptake follows a rapid LDL-like, clathrin- and dynamin-dependent endocytosis pathway, which is dependent on the receptors CD74 and CXCR4 and leads to the initiation of endosomal signaling responses. 相似文献
3.
Macrophage migration inhibitory factor (MIF) is a chemokine-like inflammatory cytokine, which plays a pivotal role in the pathogenesis of inflammatory and cardiovascular diseases as well as cancer. We previously identified MIF as a novel B cell chemokine that promotes B cell migration through non-cognate interaction with the CXC chemokine receptor CXCR4 and CD74, the surface form of MHC class II invariant chain. In this study, we have analyzed the regulation of the MIF receptors under inflammatory conditions by investigating the impact of lipopolysaccharide (LPS), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) on CD74 and CXCR4 expression in B lymphocytes. We found that both LPS and TNF-α stimulation of primary B cells and the human B myeloma cell line RPMI-8226 enhanced protein expression as well as mRNA levels of CD74 in a time- and dose-dependent manner. By contrast, no effect on CXCR4 expression was observed. Selective inhibition of IκBα phosphorylation significantly attenuated LPS-induced expression of CD74, suggesting the contribution of NF-κB signaling pathways to the regulation of CD74 expression. Importantly, individual or simultaneous blockade of MIF or CD74 using specific neutralizing antibodies markedly affected B cell proliferation after LPS exposure. Taken together, our findings unveil a connection between the pro-proliferative activity of MIF/CD74 signaling in B cells and inflammation, offering novel target mechanisms in inflammatory cardiovascular or autoimmune pathogenesis. 相似文献
4.
M.D. Sanchez-Niño A.B. Sanz O. Ruiz-Andres J. Poveda M.C. Izquierdo R. Selgas J. Egido A. Ortiz 《Cytokine & growth factor reviews》2013,24(1):23-40
Macrophage migration inhibitory factor (MIF) is increased in kidney and urine during kidney disease. MIF binds to and activates CD74 and chemokine receptors CXCR2 and CXCR4. CD74 is a protein trafficking regulator and a cell membrane receptor for MIF, D-dopachrome tautomerase (D-DT/MIF-2) and bacterial proteins. MIF signaling through CD74 requires CD44. CD74, CD44 and CXCR4 are upregulated in renal cells in diseased kidneys and MIF activation of CD74 in kidney cells promotes an inflammatory response. MIF or CXCR2 targeting protects from experimental kidney injury, CD44 deficiency modulates kidney injury and CXCR4 activation promotes glomerular injury. However, the contribution of MIF or MIF-2 to these actions of MIF receptors has not been explored. The safety and efficacy of strategies targeting MIF, CD74, CD44 and CXCR4 are under study in humans. 相似文献
5.
Structural and functional characterization of a secreted hookworm Macrophage Migration Inhibitory Factor (MIF) that interacts with the human MIF receptor CD74 总被引:11,自引:0,他引:11
Cho Y Jones BF Vermeire JJ Leng L DiFedele L Harrison LM Xiong H Kwong YK Chen Y Bucala R Lolis E Cappello M 《The Journal of biological chemistry》2007,282(32):23447-23456
Hookworms, parasitic nematodes that infect nearly one billion people worldwide, are a major cause of anemia and malnutrition. We hypothesize that hookworms actively manipulate the host immune response through the production of specific molecules designed to facilitate infection by larval stages and adult worm survival within the intestine. A full-length cDNA encoding a secreted orthologue of the human cytokine, Macrophage Migration Inhibitory Factor (MIF) has been cloned from the hookworm Ancylostoma ceylanicum. Elucidation of the three-dimensional crystal structure of recombinant AceMIF (rAceMIF) revealed an overall structural homology with significant differences in the tautomerase sites of the human and hookworm proteins. The relative bioactivities of human and hookworm MIF proteins were compared using in vitro assays of tautomerase activity, macrophage migration, and binding to MIF receptor CD74. The activity of rAceMIF was not inhibited by the ligand ISO-1, which was previously determined to be an inhibitor of the catalytic site of human MIF. These data define unique immunological, structural, and functional characteristics of AceMIF, thereby establishing the potential for selectively inhibiting the hookworm cytokine as a means of reducing parasite survival and disease pathogenesis. 相似文献
6.
Vera PL Wang X Meyer-Siegler KL 《Experimental biology and medicine (Maywood, N.J.)》2008,233(5):620-626
The objective of this study was to determine if macrophage migration inhibitory factor (MIF) is upregulated in the bladder during persistent cystitis. MIF is a pro-inflammatory cytokine found pre-formed in the urothelium. Previous findings showed that acute bladder inflammation increased MIF release into the bladder lumen while upregulating MIF and CD74 (MIF receptor) in the bladder. Because the effects of persistent cystitis on MIF and CD74 are not known, MIF and CD74 changes in the bladder were examined after short-term (1-day) or persistent (8-day) cyclophosphamide (CYP)-induced bladder inflammation. Anesthetized male Sprague-Dawley rats received either a single CYP treatment (150 mg/kg, ip; saline, control) and examined 1 day after treatment (short-term), or repeated CYP doses (20-75 mg/ kg, ip; saline, control; every third day for 8 days) and examined after 8 days of treatment (persistent). MIF protein levels in urine and bladder were determined. In addition, Mif, CD74, and cox-2 expression in the bladder was determined. Histology verified cystitis and MIF and CD74 immunoreactivity in the bladder. Repeated CYP doses were decreased to avoid toxicity. Short-term or repeated low CYP doses (40 mg/kg; 8 days) increased urinary MIF and decreased bladder MIF amounts while upregulating bladder Mif and CD74 mRNA expression. Persistent CYP-induced bladder inflammation (even at 40 mg/kg; 8-day treatment) also upregulated other inflammatory cytokines (CCL5, IL-11, iNOS) in the bladder. Short-term and persistent (low dose) CYP cystitis are associated with markedly increased MIF release into the urine and upregulation of Mif and CD74 in bladder. This supports the hypothesis that MIF and CD74 play a significant role in both acute and persistent stages of bladder inflammation. 相似文献
7.
The ubiquitous heterodimeric nitric oxide (NO) receptor soluble guanylate cyclase (sGC) plays a key role in various signal transduction pathways. Binding of NO takes place at the prosthetic heme moiety at the N-terminus of the beta(1)-subunit of sGC. The induced structural changes lead to an activation of the catalytic C-terminal domain of the enzyme and to an increased conversion of GTP into the second messenger cyclic GMP (cGMP). In the present work we selected and substituted different residues of the sGC heme-binding pocket based on a sGC homology model. The generated sGC variants were tested in a cGMP reporter cell for their effect on the enzyme activation by heme-dependent (NO, BAY 41-2272) stimulators and heme-independent (BAY 58-2667) activators. The use of these experimental tools allows the enzyme's heme content to be explored in a non-invasive manner. Asp(44), Asp(45) and Phe(74) of the beta(1)-subunit were identified as being crucially important for functional enzyme activation. beta(1)Asp(45) may serve as a switch between different conformational states of sGC and point to a possible mechanism of action of the heme dependent sGC stimulator BAY 41-2272. Furthermore, our data shows that the activation profile of beta(1)IIe(145) Tyr is unchanged compared to the native enzyme, suggesting that Tyr(145) does not confer the ability to distinguish between NO and O(2). In summary, the present work further elucidated intramolecular mechanisms underlying the NO- and BAY 41-2272-mediated sGC activation and raises questions regarding the postulated role of Tyr(145) for ligand discrimination. 相似文献
8.
Fast synaptic inhibition in the mammalian central nervous system is mediated primarily via activation of the gamma-aminobutyric acid type A receptor (GABAA-R). Upon agonist binding, the receptor undergoes a structural transition from the closed to the open state. This transition, known as gating, is thought to be associated with a sequence of conformational changes originating at the agonist-binding site, ultimately resulting in opening of the channel. Using site-directed mutagenesis and several different GABAA-R agonists, we identified a number of highly conserved charged residues in the GABAA-R beta2 subunit that appear to be involved in receptor activation. We then used charge reversal double mutants and disulfide trapping to investigate the interactions between these flexible loops within the beta2 subunit. The results suggest that interactions between an acidic residue in loop 7 (Asp146) and a basic residue in pre-transmembrane domain-1 (Lys215) are involved in coupling agonist binding to channel gating. 相似文献
9.
Identification of two serine residues involved in agonist activation of the beta-adrenergic receptor 总被引:17,自引:0,他引:17
C D Strader M R Candelore W S Hill I S Sigal R A Dixon 《The Journal of biological chemistry》1989,264(23):13572-13578
Pharmacophore mapping of the ligand binding domain of the beta-adrenergic receptor has revealed specific molecular interactions which are important for agonist and antagonist binding to the receptor. Previous site-directed mutagenesis experiments have demonstrated that the binding of amine agonists and antagonists to the receptor involves an interaction between the amine group of the ligand and the carboxylate side chain of Asp113 in the third hydrophobic domain of the receptor (Strader, C. D., Sigal, I. S., Candelore, M. R., Rands, E., Hill, W. S., and Dixon, R. A. F. (1988) J. Biol. Chem. 263, 10267-10271). We have now identified 2 serine residues, at positions 204 and 207 in the fifth hydrophobic domain of the beta-adrenergic receptor, which are critical for agonist binding and activation of the receptor. These serine residues are conserved with G-protein-coupled receptors which bind catecholamine agonists, but not with receptors whose endogenous ligands do not have the catechol moiety. Removal of the hydroxyl side chain from either Ser204 or Ser207 by substitution of the serine residue with an alanine attenuates the activity of catecholamine agonists at the receptor. The effects of these mutations on agonist activity are mimicked selectively by the removal of the catechol hydroxyl moieties from the aromatic ring of the agonist. The data suggest that the interaction of catecholamine agonists with the beta-adrenergic receptor involves two hydrogen bonds, one between the hydroxyl side chain of Ser204 and the meta-hydroxyl group of the ligand and a second between the hydroxyl side chain of Ser207 and the para-hydroxyl group of the ligand. 相似文献
10.
Junqiu Yang Huanghe Yang Xiaohui Sun Kelli Delaloye Xiao Yang Alyssa Moller Jingyi Shi Jianmin Cui 《The Journal of general physiology》2013,141(2):217-228
As a unique member of the voltage-gated potassium channel family, a large conductance, voltage- and Ca2+-activated K+ (BK) channel has a large cytosolic domain that serves as the Ca2+ sensor, in addition to a membrane-spanning domain that contains the voltage-sensing (VSD) and pore-gate domains. The conformational changes of the cytosolic domain induced by Ca2+ binding and the conformational changes of the VSD induced by membrane voltage changes trigger the opening of the pore-gate domain. Although some structural information of these individual functional domains is available, how the interactions among these domains, especially the noncovalent interactions, control the dynamic gating process of BK channels is still not clear. Previous studies discovered that intracellular Mg2+ binds to an interdomain binding site consisting of D99 and N172 from the membrane-spanning domain and E374 and E399 from the cytosolic domain. The bound Mg2+ at this narrow interdomain interface activates the BK channel through an electrostatic interaction with a positively charged residue in the VSD. In this study, we investigated the potential interdomain interactions between the Mg2+-coordination residues and their effects on channel gating. By introducing different charges to these residues, we discovered a native interdomain interaction between D99 and E374 that can affect BK channel activation. To understand the underlying mechanism of the interdomain interactions between the Mg2+-coordination residues, we introduced artificial electrostatic interactions between residues 172 and 399 from two different domains. We found that the interdomain interactions between these two positions not only alter the local conformations near the Mg2+-binding site but also change distant conformations including the pore-gate domain, thereby affecting the voltage- and Ca2+-dependent activation of the BK channel. These results illustrate the importance of interdomain interactions to the allosteric gating mechanisms of BK channels. 相似文献
11.
《Cytokine》2016
D-dopachrome tautomerase (D-DT) shares amino acid sequence similarity, structural architecture and biological activity with the cytokine MIF. Recent studies show that the two protein homologs also bind to the same cell surface receptor, CD74, to activate the ERK1/2 pathway that ultimately leads to pro-inflammatory and pro-survival gene expression. We recently showed that RTL1000 and DRa1-MOG-35-55, two biological drugs with potent anti-inflammatory properties that treat experimental autoimmune encephalomyelitis (EAE) in mice, bind to the cell surface receptor CD74 with high affinity and compete with MIF for binding to the same regions of CD74. Computational modeling of MIF and RTL1000 binding interactions with CD74 predicted the presence of three CD74 binding regions for each MIF homotrimer. Through a similar approach we have now expanded our work to study the D-DT (MIF-2) interaction with CD74 that is mainly defined by three elements scattered throughout the disordered regions of the interacting molecules. The model predicted: (a) a hydrophobic cradle between CD74 and D-DT consisting of N-terminal tyrosine residues of three CD74 monomers arranged in a planar alignment interacts with aromatic amino acid residues located in the disordered D-DT C-terminus; (b) a triad consisting of the E103 residue on one D-DT monomer in close contact with R179 and S181 on one chain of the CD74 trimer forms an intermolecular salt bridge; and (c) amino acid residues on the C-terminus random coil of CD74 chain C form a long interacting area of ∼500 Å2 with a disordered region of D-DT chain B. These three binding elements were also present in MIF/CD74 binding interactions, with involvement of identical or highly similar amino acid residues in each MIF homotrimer that partner with the exact same residues in CD74. Topologically, however, the location of the three CD74 binding regions of the D-DT homotrimer differs substantially from that of the three MIF binding regions. This key difference in orientation appears to derive from a sequence insertion in D-DT that topologically limits binding to only one CD74 molecule per D-DT homotrimer, in contrast to predicted binding of up to three CD74 molecules per MIF homotrimer. These results have implications for the manner in which D-DT and MIF compete with each other for binding to the CD74 receptor and for the relative potency of DRa1-MOG-35-55 and RTL1000 for competitive inhibition of D-DT and MIF binding and activation through CD74. 相似文献
12.
CD66b regulates adhesion and activation of human eosinophils 总被引:1,自引:0,他引:1
Eosinophils and their products are likely important in the pathophysiology of allergic diseases, such as bronchial asthma, and in host immunity to parasitic organisms. However, the mechanisms for proinflammatory mediator release by eosinophils are poorly understood. CD66b (CEACAM8, CGM6, NCA-95) is a single chain, GPI-anchored, highly glycosylated protein belonging to the carcinoembryonic Ag supergene family. CD66b is an activation marker for human granulocytes; however, its biological functions are largely unknown in eosinophils. We found that CD66b is highly expressed on the surface of human peripheral blood eosinophils isolated from healthy individuals. Engagement of CD66b, but not CD66a, by mAb or a natural ligand, galectin-3, activated a Src kinase family molecule, hemopoietic cell kinase (Hck), and induced cellular adhesion, superoxide production, and degranulation of eosinophils. CD66b molecules were localized in lipid rafts, and disruption of lipid rafts or removal of the GPI anchor inhibited the adhesion and activation of eosinophils. Importantly, CD66b was constitutively and physically associated with a beta2 integrin, CD11b, and cross-linking of CD66b induced a striking clustering of CD11b molecules. Thus, CD66b molecules are involved in regulating adhesion and activation of eosinophils, possibly through their localization in lipid rafts and interaction with other cell surface molecules, such as CD11b. Binding of exogenous or endogenous carbohydrate ligands(s) to CD66b may be important in the release of proinflammatory mediators by human eosinophils. 相似文献
13.
Chin-Hsien Lin Hsun Li Yi-Nan Lee Ying-Ju Cheng Ruey-Meei Wu Cheng-Ting Chien 《The Journal of cell biology》2015,210(3):471-483
Constructing the dendritic arbor of neurons requires dynamic movements of Golgi outposts (GOPs), the prominent component in the dendritic secretory pathway. GOPs move toward dendritic ends (anterograde) or cell bodies (retrograde), whereas most of them remain stationary. Here, we show that Leucine-rich repeat kinase (Lrrk), the Drosophila melanogaster homologue of Parkinson’s disease–associated Lrrk2, regulates GOP dynamics in dendrites. Lrrk localized at stationary GOPs in dendrites and suppressed GOP movement. In Lrrk loss-of-function mutants, anterograde movement of GOPs was enhanced, whereas Lrrk overexpression increased the pool size of stationary GOPs. Lrrk interacted with the golgin Lava lamp and inhibited the interaction between Lva and dynein heavy chain, thus disrupting the recruitment of dynein to Golgi membranes. Whereas overexpression of kinase-dead Lrrk caused dominant-negative effects on GOP dynamics, overexpression of the human LRRK2 mutant G2019S with augmented kinase activity promoted retrograde movement. Our study reveals a pathogenic pathway for LRRK2 mutations causing dendrite degeneration. 相似文献
14.
DegP, a member of the HtrA family of proteins, conducts critical bacterial protein quality control by both chaperone and proteolysis activities. The regulatory mechanisms controlling these two distinct activities, however, are unknown. DegP activation is known to involve a unique mechanism of allosteric binding, conformational changes and oligomer formation. We have uncovered a novel role for the residues at the PDZ1:protease interface in oligomer formation specifically for chaperone substrates of Chlamydia trachomatis HtrA (DegP homolog). We have demonstrated that CtHtrA proteolysis could be activated by allosteric binding and oligomer formation. The PDZ1 activator cleft was required for the activation and oligomer formation. However, unique to CtHtrA was the critical role for residues at the PDZ1:protease interface in oligomer formation when the activator was an in vitro chaperone substrate. Furthermore, a potential in vivo chaperone substrate, the major outer membrane protein (MOMP) from Chlamydia, was able to activate CtHtrA and induce oligomer formation. Therefore, we have revealed novel residues involved in the activation of CtHtrA which are likely to have important in vivo implications for outer membrane protein assembly. 相似文献
15.
Valentine WJ Fells JI Perygin DH Mujahid S Yokoyama K Fujiwara Y Tsukahara R Van Brocklyn JR Parrill AL Tigyi G 《The Journal of biological chemistry》2008,283(18):12175-12187
Lysophosphatidic acid (LPA) is a ligand for three endothelial differentiation gene family G protein-coupled receptors, LPA(1-3). We performed computational modeling-guided mutagenesis of conserved residues in transmembrane domains 3, 4, 5, and 7 of LPA(1-3) predicted to interact with the glycerophosphate motif of LPA C18:1. The mutants were expressed in RH7777 cells, and the efficacy (E(max)) and potency (EC(50)) of LPA-elicited Ca(2+) transients were measured. Mutation to alanine of R3.28 universally decreased both the efficacy and potency in LPA(1-3) and eliminated strong ionic interactions in the modeled LPA complexes. The alanine mutation at Q3.29 decreased modeled interactions and activation in LPA(1) and LPA(2) more than in LPA(3). The mutation W4.64A had no effect on activation and modeled LPA interaction of LPA(1) and LPA(2) but reduced the activation and modeled interactions of LPA(3). The R5.38A mutant of LPA(2) and R5.38N mutant of LPA(3) showed diminished activation by LPA; however, in LPA(1) the D5.38A mutation did not, and mutation to arginine enhanced receptor activation. In LPA(2), K7.36A decreased the potency of LPA; in LPA(1) this same mutation increased the E(max). In LPA(3), R7.36A had almost no effect on receptor activation; however, the mutation K7.35A increased the EC(50) in response to LPA 10-fold. In LPA(1-3), the mutation Q3.29E caused a modest increase in EC(50) in response to LPA but caused the LPA receptors to become more responsive to sphingosine 1-phosphate (S1P). Surprisingly micromolar concentrations of S1P activated the wild type LPA(2) and LPA(3) receptors, indicating that S1P may function as a weak agonist of endothelial differentiation gene family LPA receptors. 相似文献
16.
Hongqi LueManfred Dewor Lin LengRichard Bucala Jürgen Bernhagen 《Cellular signalling》2011,23(1):135-144
c-Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) family and controls essential processes such as inflammation, cell differentiation, and apoptosis. JNK signalling is triggered by extracellular signals such as cytokines and environmental stresses. Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine with chemokine-like functions in leukocyte recruitment and atherosclerosis. MIF promotes MAPK signalling through ERK1/2, while it can either activate or inhibit JNK phosphorylation, depending on the cell type and underlying stimulation context. MIF activities are mediated by non-cognate interactions with the CXC chemokine receptors CXCR2 and CXCR4 or by ligation of CD74, which is the cell surface expressed form of the class II invariant chain. ERK1/2 signalling stimulated by MIF is dependent on CD74, but the receptor pathway involved in MIF activation of the JNK pathway is unknown. Here we comprehensively characterize the stimulatory effect of MIF on the canonical JNK/c-Jun/AP-1 pathway in fibroblasts and T cell lines and identify the upstream signalling components. Physiological concentrations of recombinant MIF triggered the phosphorylation of JNK and c-Jun and rapidly activated AP-1. In T cells, MIF-mediated activation of the JNK pathway led to upregulated gene expression of the inflammatory chemokine CXCL8. Activation of JNK signalling by MIF involved the upstream kinases PI3K and SRC and was found to be dependent on CXCR4 and CD74. Together, these data show that the CXCR4/CD74/SRC/PI3K axis mediates a rapid and transient activation of the JNK pathway as triggered by the inflammatory cytokine MIF in T cells and fibroblasts. 相似文献
17.
Pedraza-Alva G Mérida LB del Rio R Fierro NA Cruz-Muñoz ME Olivares N Melchy E Igras V Holländer GA Burakoff SJ Rosenstein Y 《IUBMB life》2011,63(10):940-948
T cell (TC) activation requires the coordinated signaling of the T cell receptor (TCR) and coreceptor molecules, allowing TCs to respond to lower degrees of TCR occupancy. Coreceptor molecules set the threshold for TC activation by controlling different regulatory signaling loops. The Cbl family members prevent undesired activation of T cells by regulating TCR signals. In this report, we show that TC prestimulation by the CD43 coreceptor molecule before TCR engagement inhibits TCR-dependent c-Cbl tyrosine phosphorylation, c-Cbl interaction with the adapter molecule Crk-L and promotes Cbl-b degradation in a PKCθ-dependent manner. Consequently, the prolonged tyrosine phosphorylation and delayed degradation of ZAP-70 and of the ζ chain lead to enhanced mitogen-activated protein kinase activation and robust TC response. These data indicates that CD43-mediated signals lower the threshold for TC activation by restricting the c-Cbl and Cbl-b inhibitory effects on TCR signaling. In addition to the strength and duration of intracellular signals, our data underscore temporality with which certain molecules are engaged as yet another mechanism to fine tune TC signal quality, and ultimately immune function. 相似文献
18.
K Sugita Y Torimoto Y Nojima J F Daley S F Schlossman C Morimoto 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(5):1477-1483
We developed a new mAb, anti-1A4, which recognizes an epitope on the CD27 molecule distinct from those recognized by several known anti-CD27 mAb. Although it has been suggested that the CD27 molecule is a T cell activation Ag, there was little direct evidence that the structure was involved in the T cell activation process. In this study, we showed that anti-1A4 inhibited anti-CD2, anti-CD3, mitogens, or soluble Ag-induced T cell proliferation as well as PWM-driven B cell IgG synthesis. Interestingly, anti-1A4 inhibited IL-2 secretion without affecting IL-2R expression. In addition, pretreatment of T cells with anti-1A4 inhibited the normally sustained intracellular calcium mobilization seen after triggering of T cells via the CD2 or CD3 pathways. Thus, binding of anti-1A4 to the CD27 molecule appears to induce a negative effect on T cell activation. This may be due to either a direct signal to T cells or the blocking of an interaction between T cells and accessory cells or both. These findings support the notion that the CD27 molecule plays an integral role in the process of T cell activation. 相似文献
19.
20.
DNA cytosine methyltransferase MspI (M.MspI) must require a different type of interaction of protein with DNA from other bacterial DNA cytosine methyltransferases (m5C-MTases) to evoke the topoisomerase activity that it possesses in addition to DNA-methylation ability. This may require a different structural organization in the solution phase from the reported consensus structural arrangement for m5C-MTases. Limited proteolysis of M.MspI, however, generates two peptide fragments, a large one (p26) and a small one (p18), consistent with reported m5C-MTase structures. Examination of the amino-acid sequence of M.MspI revealed similarity to human topoisomerase I at the N-terminus. Alignment of the amino-acid sequence of M.MspI also uncovered similarity (residues 245-287) to the active site of human DNA ligase I. To evaluate the role of the N-terminus of M.MspI, 2-hydroxy-5-nitrobenzyl bromide (HNBB) was used to truncate M.MspI between residues 34 and 35. The purified HNBB-truncated protein has a molecular mass of approximately equal 45 kDa, retains DNA binding and methyltransferase activity, but does not possess topoisomerase activity. These findings were substantiated using a purified recombinant MspI protein with the N-terminal 34 amino acids deleted. Changing the N-terminal residues Trp34 and Tyr74 to alanine results in abolition of the topoisomerase I activity while the methyltransferase activity remains intact. 相似文献